1/7/2022

MICTOPIOCESSOr
and
embly Language

Computers are everywhere !
maybe Hidden (Embedded)

1/7/2022

A ““short list” of embedded systems

Modems

MPEG decoders
Network cards

Network switches/routers
On-board navigation
ELE

Photocopiers
Point-of-sale systems
Portable video games
Printers

Satellite phones
Scanners

Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions

Temperature controllers
Theft tracking systems
TV set-top boxes

VCR’s, DVD players
Video game consoles
Video phones

Washers and dryers

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Avionic systems
Battery chargers
Camcorders

Cell phones

Cell-phone base stations
Cordless phones
Cruise control

Digital cameras

Disk drives

Electronic card readers
Electronic instruments
Electronic toys/games
Factory control

Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

And the list goes on and on

N. Samsunchi

What is a Computer ?

and Control

amsunchi

Process

~

(CPU)

1/7/2022

How to make 1t ?

Idea #1 :Make Computer as a whole

system

Process
and Control
(CPU)

1/7/2022

A Brief History
1941 : Zuse Z3

1 94 « The Z3 comouter developed by Konrad Zuse uses a 5.33 hertz clocking frequency.
« |Photo courtesy of Horst Zuse, the san of Konrad.)

N. Samsunchi

A Brief History

1946 : ENIAC , 30,000Kg
$7,000,000,f=100KHz

N. Samsunchi

1/7/2022

A Brief History

1949 : EDVAC

Main Players :
IBM , DEC,
Honeywell

Mainframe Computers :

Big,
Expensive ,
Independent,

Dedicated Hardware and
Software,

Single purpose ,
Incompatible.

N. Samsunchi

1/7/2022

Idea #2 : Separate the CPU
=>» Microprocessor(uP)

Process
and Control Output
(CPU)

A Brief History ...

1971 :Intel 4004

For Busicom calculator
2300 transistors
400 — 800 kHz
4-bit word size
16-pin DIP package
Masks Drawn with color pencils !

A Brief History . @

1971 :Intel 4004

N. Samsunchi

1972 : Intel 8008
For Terminals

3500 transistors
500 — 800 kHz

8-bit word size
18-pin DIP package

N. Samsunchi

1/7/2022

1/7/2022

A Brief History ...

Terminal

Terminal

P -,
-
=

Terminal

N. Samsunchi

A Brief History ...

1974 : Intel 8080

Used in Altair computer
(early hobbyist PC)

4500 transistors

2 MHz

8-bit word size

16-bit address bus

40-pin DIP package

= Intel 8085

N. Samsunchi

A Brief History ...

1974 : Intel 8080

(early hobbyist PC)

A Brief History ...

1974 : Motorola 6800
1976 : Zilog Z80

1/7/2022

A Brief History ...

1980 : Intel 8086
=> Intel 8088

Revolutionary products i 4
29,000 transistors

5-10 MHz

16-bit word size

40-pin DIP package

A Brief History .

1981 : IBM PC
1983=>PC/XT

Intel
8086/88=>»80186=>»80286=>»80386=>»80486

1/7/2022

10

1/7/2022

1982 : 80286
IBM PC AT
134k transistors
6-12 MHz

16-bit word size
68-pin

A Brief History ...

1982 : 80286

134k transistc
6-12 MHz
16-bit word s:
68-pin

11

1/7/2022

A Brief History ...

1985 : 80386 =
Modern x86 Architecture | , S
275k transistors |
16-33 MHz

32-bit word size

100-pin

A Brief History ...

1989 : 80486

Floating point unit
1.2M transistors
25-100 MHz

32-bit word size
168-pin

12

A Brief History ...
1993 : Pentium

3.2M transistors
60-300 MHz
32-bit word size
296-pin

A Brief History ...

1995~1999 : Pentlum Pro / II

/ I

Multimedia instructions |
5.5M-28M transistors :
166-1000 MHz

32-bit word size

Xeon (for Servers)

1/7/2022

13

A Brief History ...
2001 : Pentium 4,

42-125M transistorsi e it

5
-

1.4-3.4 GHz | ==t T

32-bit word size
478-pin
2004:First 64-bit

Instructions

A Brief History ...

Intel Pentium D

Intel Pentium Dual-Core
Intel Core

Intel Core2

Intel Core i3

Intel Core i5

Intel Core i7

Intel Core 19

Intel Itanium

A1)

1/7/2022

14

Transistor count

A Brief History ...

N. Samsunchi

Moore’s Law

s SRARS TH

2,600 000,000
1,000.000.000

CQUIVO Shows ramwisio

10,000,000 ey oy

e
e

e oV i

wme v
B eum

e, i eIm

mte T @i e
20 gl

Coe S

% i @5 Corn mw Wwnemn

I
1971

Date of introduction

N. Samsunchi

1/7/2022

15

Microprocessor

Cheaper
Smaller
General Purpose

Hardware / Software
Compatibility

Microcomputer

General Serial 10
Purpose RAM Timer COM Port
Micro Port

processor

1/7/2022

16

1/7/2022

Microcomputer

Northbridge (with heatsin

roints /

Idea #3 : Include Some Memory
and I/0 =>»Microcontroller(uC)

Process
Input and Control
(CPU)

17

What is a Microcontroller?

Integrated chip that typically contains
integrated CPU, memory (RAM -ROM), I/O ports
on a single Chip.

Not a general-purpose computer .Designed to
execute a specific task to control a single
system (Embedded System)

System on a Chip (SoC)

Lab. On a chip (LoC)

Smaller & Specified (cost reduction)

N. Samsunchi

What is a Microcontroller?

Microcontroller

Serial
ROM | |/OPort| | Timer COM
Port

I N

N. Samsunchi

1/7/2022

18

1/7/2022

Mlcrocontroller VS Mlcroprocessor

It W"@.,

History
1974 : TMS1000

19

Most common microcontrollers

PIC (Microchip Technology)
HCS12 (Freescale)

8051 (Intel)

Z28(Zilog)
BASIC Stamp(Parallax)

ESP-01 module ty Al-Thinkes
Manufecturer Sxpeanul Systurms
Type 200 miCroCcontroler

cPuU €0 80 MHZ (default) or 180 Mz
Memory A2 Wi mstrocton. B0 KIB user

i
Input 16 GPIO pns
Successor ESPa

E’:F‘-WRCN'."—; 22 module weh
F5P22-DOWDOE chip
Manufacturer Espeesull Syaternos
Type Mict oc ot olhes
Release date September 4 20907
cPu Tonstica Xtonxes (X0
Mmicroprocessor @ 160 ar
240 MH2
Memory 520 KB SRAM
Power Javoc
Predecessor ESPE260

1/7/2022

20

1/7/2022

Most common microcontrollers

ESP8266
16 I/0O Pins

1MB Memory Q
WiF1 Network

Most common microcontrollers

ESP32
16 I/0 Pins
1MB Memory
WiFi Network

21

1/7/2022

Idea #4 : Separate I/0 from Processing
and Memory=>» Cloud Computing

Process
and Control
(CPU)

Cloud Computing Services

Infrastructure as a service
(EER)

Platform as a service (PaaS)
Software as a service (Saas)
Mobile "backend" as a
service (MBaab)

N. Samsunchi

22

1/7/2022

Classes of Computers

Server Computers

Network based.

High Capacity, Performance, Reliability
Personal Computers

General Purpose.

Medium Capacity, Performance, Reliability
Embedded Computers

Single Purpose.

Low Capacity, Performance

I/0 oriented.

N. Samsunchi

Levels of Program Coding

High Level Language

Closer to problem domain.

Assembly Programming Language
Textual representation of instructions.

Hardware Representation
Binary Digits(Bits)

N. Samsunchi

23

1/7/2022

Instruction Set Architecture (ISA)

Instructions.
Registers.

Memory Architecture.
Addressing Modes.

Benefits:
Abstraction
Multiple Implementations :
Physical (INTEL - AMD)
Virtual

Instruction -
SC"\ A | a 3
Architecture

Software Mardware

Benefits:
Abstraction

Physical (INTEL - AMD)
Virtual

24

1/7/2022

How to select a proper CPU?

Availability
Market

Support (Data Sheets, Development Tools,
Experts,...)

Price
Power
Performance

What is Performance ?

Intel Corei3 , {=733MHz
Vs
ARM , {=1500MHz
Which has a higher performance?

25

CPU Clocking

f: Clock Frequency (Hz : Cycles per
second)

T : Clock period (S: Duration of a clock
cycle)
T=1/f

Example :f =2 GHz = 2 x 10/9 Hz
= T= 1/f = 1/2GHz=0.5 nS=500 pS

N. Samsunchi

What is Performance ?

Intel Corei3 , {=733MHz
Vs
ARM , {=1500MHz
Which has a higher performance?

1/7/2022

26

Computing Performance factors
Algorithm

Determines No. of Operations executed.

Programming Language, Compiler ,
Architecture

Determines No. of Machine Instructions executed
per operation.

Processor and Memory System
Determines how fast instructions are executed.

I/0 System

Determines how fast I/O operations are Executed.

N. Samsunchi

Performance
Relative Performance

Definition: Performance=1/Execution Time

Example : Time Taken to run a program :
Computer A:10S
Computer B: 15 S
Relative Performance = (1/10) / (1/15) = 15/10=1.5
2 Computer A is 1.5 times faster than Computer B.

Benchmark Programs (Antutu , Landmark, ..)

N. Samsunchi

1/7/2022

27

CPU Time

Definition :
CPU Time=No. of CPU Clock Cycles X Clock Cycle Time
CPU Time=N.T=N/f

To improve Performance (reduce CPU Time) :
Decrease N
Increase

CPU Time Example :

Computer A :{1=2GHz ,
CPUTimel =10S

Computer B : N2=1.2N1
CPU Time2=6 S

1/7/2022

28

1/7/2022

Answer -CPU Time Example :

CPU Time1=N1/f1=10S
N1=(10)(2GHz)

CPU Time2=N2/2=6S
f2=N2/6=1.2N1/6

£2=(1.2)(10)(2GHz)/6=

Instruction count and CPI

No. of Clock Cycles=Instructions Count x
Cycles Per Instruction

CPU Time=N.T=N/f

CPU Time=(ICN)(CPI) / {
ICN: Instruction Count
CPI: Cycle Per Instruction

29

Instruction count and CPI

Example :
Computer A: f1=4GHz , CPI1= 2

Computer B: f2=2GHz. CPI2= 1.2
same ISA

Which is faster ? By how much ?

Instruction count and CPI

Answer :
Performancel/Performance?2
=CPU Time2/CPU Timel

Performancel/Performance?
=(CPI2/CPI1)(f1/12)

Performancel/Performance?2
=(1.2/2)(4/2)=1.2

1/7/2022

30

1/7/2022

CPI

CPI=Total No. of Clock Cycles / No. of Instructions

Example :

m_m

No. of required Clock Cycles
No. of Instructions-Software 1 2 1 2
No. of Instructions-Software 2 4 1 1

CPI1=(2+2+6)/(2+1+2)=2

N. Samsunchi

Performance Summary

CPU Time=(ICN).(CPI).(1/%)
Performance depends on:
Algorithm :
affects ICN ,possibly CPI
Software (Programming Language , Compiler) :
affects ICN, CPI
ISA Hardware :
affects ICN, CPI, f

N. Samsunchi

31

1/7/2022

Power

Need for Mobility
Extra Heat Problem
World Climate Problems.

In Current technology (CMOS), Power
depends on :

f

Voltage 22

Low Voltage design (5V = 1V)

N. Samsunchi

Power 1s a limiting Factor

(The Power Wall)
We can NOT reduce Voltage further

We can NOT reduce {

We can NOT accept more heat

What else to do?

Change the architecture

N. Samsunchi

32

Unproportioned Power

Consumption

Example : AMD OPTERON X4 CPU SPEC
Power Benchmark

At %100 Load : 295 W (Full Power)

At %50 Load : 246W (%83 Full Power)

At %10 Load : 180W (%61 Full Power)

At %0 Load :141W (%48 Full Power)

Google Data Centers : (0.3 Wh per search)

Mostly operate at %10- %50 load

At %100 load less than %1 of the time.
=» Do NOT Overestimate Processing Power needs!

N. Samsunchi

Y e

N. Samsunchi

1/7/2022

33

Multicore microprocessors
More than one processor per chip.

| Processor
. Graphicsgt
f E ; including
| | forih i Display;
B i & EEE bR R e HiaiiEd ARRIE DM arid
i i y . i Misci 170

N. Samsunchi

1/7/2022

34

1/7/2022

Parallel Processing ...

New Problems :
Parallel Programming
Load Balancing

Communication and
Synchronization

How to speed up the CPU ?

Change the architecture

Pipelining
RISC vs CISC

35

1/7/2022

Old Architectures
(Fetch, Decode , Execute)

Execute

Clock

Decode

Execute

Clock

36

1/7/2022

RISC vs. CISC

CISC (Complex Instruction Set Computer)
Put as many instruction as you can into the CPU
RISC (Reduced Instruction Set Computer)

Reduce the number of instructions, and use your
facilities in a more proper way.

RISC architecture

1980 : The “20/80” Rule ,By Patterson.
Berkeley University - SPARC architecture.
Stanford University - MIPS architecture.

_lﬁnu;cc.x. 3o xsodenn B EREESER
DS ’

| _
a S {-
% Sun '}

P ©® 1995, SMI

UraSPARC

4PDSOI0CDS2
S709K8004

JAPAN h o
STP1030ABGA-200-001

37

RISC architecture ...

IBM Corp. 2 PowerPC architecture.
Atmel Corp. 2 AVR architecture.

s PowerPC 6071
SZSTE O w1992

RALLLLLLLL L Y
%

PPCE01FD-080-2

N. Samsunchi

RISC architecture ...

Acorn Corp. 2 ARM architecture.

Cortex-A Cortex-M SecurCore
Highest performance Fast response Smallest/lowest power Tamper resistant
Optimized for rich Optimized for Optimized for discrete Optimized for security
operating systems high-performance, hard ~ processing and applications

real-time applications microcontrofier

N. Samsunchi

1/7/2022

38

1/7/2022

ARM SecureCore

MasterCard.

D))
CORPORATE

5412 7512 3412 345k

e 12-1b S

_,,.

=
LEE M. CARDHOLDER Masteréar
ANY COMPANY, INC. 5

N. Samsunchi

5

N
Jewellery

IT Asset Tracking

Tracking - ‘? P
%ii%, e)
S

5Cl|uél:‘s &

Hospitals Coliages

N. Samsunchi

39

1/7/2022

Smart Tags

e
o)

Smart Tags

(&)

40

ARM 15IM

Sim

h@m =

N. Samsunchi

Arm Kigen Server
Solutions

o

Arm Kigen OS

N. Samsunchi

1/7/2022

41

1/7/2022

The Amdahl’s Law

The Amdahl’s law-example
Total Time=100s

Multiplication Time=75S

We want 2 times better Performance.
How much improve Multiplication?

42

1/7/2022

The Amdahl’s law-example
P2=2P1 - T2=T1/2=100S/2=50S
50=(75/IF)+(100-75) > IF=3

We want 4 times performance.

Recalculate IFE.
=>» It can NOT done!

MIPS as a Performance Metric

MIPS : Million Instructions Per Second.

Example :
CPU 1 :100 MIPS.
CPU 2: 120 MIPS.

It is a method of measuring the raw speed of a
computer's processor

43

1/7/2022

CPU Benchmarking

SPEC (Standard Performance Evaluation Corp)

How to do benchmark:
Execute n Standard Programs and measure execution times.
Normalize relative to Reference machine.
Calculate geometric mean :

n
1_[Normalized Execution Times
1

Assignment 1:
geometric mean and NOT arithmetic mean?

N. Samsunchi

Project Implementation
Breadboards Dedicated Board.

Design, Test and Production
Prototyping

N. Samsunchi

44

1/7/2022

Project Implementation

Single Board Computers (SBC)

Project Implementation

Raspberry Pi Single Board Computer (SBC)

45

1/7/2022

Project Implementation ...

RaspberryPi Single Board Computer (SBC)

Project Implementation ...

RaspberryPi Single Board Computer (SBC)

46

1/7/2022

Project Implementation ...

RaspberryPi Zero W

Wireless LAN
Bluetooth 4.1

TR EE T EEE R

| (o™
"e
>

ﬁ
=3

A e ————=s
2 Micro-US8 Micro-US8
DATA Power

Comira Connsctor
Composite Video

Full Computer :
PC (Desktop, Laptop)
Industrial PC (IPC)

47

1/7/2022

Project Implementation ...

Military PC (MPC)

A.Newest and the most Powerful Intel
and ANMD X86 desktop grade CPUs and
their specifications(f , No. of Cores)?

B. Newest and the most Powerful Arduino
and Raspberry Pi SBCs and their
specifications(uP or uC, f, Memory)?

48

1/7/2022

Sample Projects

Sample Projects ...
WEMOS D1 Single Board Computer (SBC)

49

1/7/2022

Sample Projects ...

50

1/7/2022

51

1/7/2022

N. Samsunchi

Specifications:
1.Contactless Temperature Measurement

f36.5°C]

YL b

4‘ {"F_
/ (-'ﬁ"(
Lae." .

N. Samsunchi

52

1/7/2022

Specifications:

1. Contactless Temperature Measurement
Distance:5 m ,

Accuracy: 0.3 °C |

Specifications:

2. License Plate Recognition
Distance:5 m

Accuracy: 99%

36 ’1

e
/ \;‘_ =)
E'I'?: A q .
""4 —— ' v /}/ A

Wa4992V

53

Specifications:
Max weight: 1 Kg
Power: Battery.
Working Time:5h
Standby Time: 24h

Price <1000%

ant 3:

A.Block diagram Design : Blocks
and their interconnections.

B. Design implementation : Which ?
Why?

1/7/2022

54

1/7/2022

: Smart Helme

3l x93
(325 033k »$)
¢

JS g i 18wty
¢

N. Samsunchi

55

Intel 8086
Assembly Language

)

Intel 8086
Microprocessor

1/7/2022

1/7/2022

8086 Microprocessor pin definitions

Common Signals
v
Apdrauni Date M
Akt s Mlatun
Sun Enanias
alazun
e s M S
- Moge donaral
Ploan Caantent

"

Wit €30 Tomt a0t
wait Sicare Control
Byarem Newnl
Fun Mankalie
Induirugs Megumet
i e
Sywten Croscw
v
Ueouna

Mode «
Funciion

e LU

Huhh Al
vivaae Sontral

Memocy i Gun ol
Durg Trarmmeit!
Date Bratdie
ASqieas LatCh
Mrabie
IO AR nowiodge
Maximum Maode Signals (MNIMX « GND)

rame Funaton Tyow
» " 0
mOGYH | PopuestiOrentor® | Sincactionsl
wome | se e | g
&3-Wo Haon Cyuin Wlatus

R0 SO R LAETIR -

3 i
EE)
051, At EnsroupiencOumns Sutout

Flaure 4.1, ROSa Fia Dofinitioas

8086 Microprocessor pin definitions

8086 CPU MIN MODE (MAX MODE)

el - JOEVCC
- O ADIS
= 39W AL16/53
- 37EALT7/54
= 36 ALB/SS
= 35 ALD56
= 34
==+ 33
= 32
- 31
= 30
= 29
= 15
- 27
= 24|
- 15
= 24
- 23
¥
= 21

. . R
L =

T TITIRITReY

e

1/7/2022

8086 Microprocessor Internal block diagram

ARITHMETC
LOGC utaT

FIGURE 2-7 8085 internal block diagram. {Intel Corp.)

8086 ISA

1/7/2022

Basic Terminology

Bit (Binary Digit—-0,1)

Nibble (4 Bits)

Byte (8 Bits , 2 Nibbles)

Word (16 Bits, 2 Bytes)

Double Word (2 Words, 32 Bits,4 Bytes)
Quad Word (4 Words,64 Bits,8 Bytes)

Kilo Byte (2210 Bytes : 1024 Bytes)

Mega Byte (220 Bytes :1,048,576 Bytes)
Giga Byte (2230 Bytes :1,073,741,824 Bytes)

How to store Word-sized Data?

A word (16-bits) is formed with two bytes of
data.
Method 1:The always
stored in

.Most significant byte is stored in the
highest.
This method of storing a number is called the

format . 32-bit integer

How to store Word-sized Data?...

Method 2: Alternate method is called the
format.

Numbers are stored with the lowest location

containing the most significant data.

32-bit integer

Memory I 0AOBOCOD

How to store Word-sized Data?...

32-bit integer 32-bit integer
0AOBOCOD Memory Memory OAOQOBOCOD
—> @ 0D a:Eﬁiaq———-
> g+1: 0C at+l:|0B | €——-
> u+}!:ﬁ at:|0C | e————
> a+3:0A 443)0D| <
Litle-endian [| : Big-endian

1/7/2022

1/7/2022

How to store Word-sized Data?...

Intel x86 processors use little-
endian. also Zilog Z80 (including
2180 and eZ80)

Motorola 68000 series , Xilinx, IBM
z/Architecture, Atmel AVR32 are Big-
endian. Also the Internet protocol suite,
such as IPv4, IPv6, TCP, and UDP

How to store Word-sized Data?...

Method 3: ARM versions 3 and
above, PowerPC, Alpha, SPARC V9,
MIPS, and Intel IA-64 : Bi-endian
Hardware/Software switchable
endianness in data fetches and
stores, instruction fetches, or both.

Real Mode /Protected Mode

8086/8088 mode of operation is known as
Real Mode Operation.

8086: 20 address lines => 1MB addressable Memory
80286 and above operate in either the real or
protected mode.

Real Mode /Protected Mode

Real mode operation allows addressing of
only the first 1M Byte of memory space—
even in Pentium 4 or Core2 microprocessor.

the first 1M byte of memory is called the real
memory, conventional memory, or DOS memory

Real Mode operation is for binary
compatibility.
Compatibility:

Source code

Binary

1/7/2022

1/7/2022

8086 Registers

Registers are in
the CPU and are
referred to by
specific names
14 Registers (all
16 Bits)

General Purpose
(Data) Registers
Address
Registers "
Status and : .
Control Registers [t e

s
noononno
3335

P -
"

eah

g

P E22222
anonnn
“« e ala £ 0w - a

" L = LB R R R - L
o000 000000000000000
: g
et i1l

[EEE L]

f1els

General Purpose (Data) registers

Hold data for an operation to be performed
Instructions execute faster if the data is in a
register

AX,BX,CX, DX are the data registers

Low and High bytes of the data registers can be
accessed separately

« AH, BH, CH, DH are the high bytes (8 bits)
« AL, BL, CL, and DL are the low bytes (8 bits)

Data Registers are general purpose registers but
they also perform special functions

1/7/2022

General Purpose (Data) registers

« AX
¢ Accumulator Register

* Preferred register to use in arithmetic,
logic and data transfer instructions

* Must also be used in I/0O operations
« BX

* Base Register

» Also serves as an address register

General Purpose (Data) registers

« CX

* Count register

* Used as a loop counter

» Used in shift and rotate operations
« DX

» Data register

* Used in multiplication and division

» Also used in I/0 operations

1/7/2022

Address Registers

 Hold the address of an instruction or
data element

* Segment registers (CS, DS,
ES, SS)

* Pointer registers (SP, BP)

 Index registers (51, DI)

Status and Control Registers

IP
e Instruction Pointer
* Flags Register

* Keeps the current status of the
processor

* Control CPU operation.

10

Flagsy

1/7/2022

Flags,

|Xix|><‘X‘OFlDFl!FITF[SF]ZFlX|AF|>C |PFIX'|CFl

*Bits marked X are undefined.

Direction

Interrupt enable

Trap

3 are control flag

General Purpose

AH T AL

Pointer

BP

07
[

SP

Segment

Status and Control

Flags

CS

11

1/7/2022

Segment Registers :CS, DS, SS,ES

» Are Address registers, Store the memory
addresses of instructions and data

* Memory Organization

* Each byte in memory has a 20 bit address
starting with O to (220)-1 or 1 meg of
addressable memory

Addresses are expressed as 5 hex digits from
00000 - FFFFF

Problem: But 20 bit addresses are TOO BIG to fit
in 16 bit registers!

Solution: Segmented Memory

Segmented Memory

Segmented memory addressing:
Physical (absolute , linear)
address is a combination of a
16-bit segment value and a 16-
bit offset value.

12

1/7/2022

Segmented Memory

Logical Address > Segment:Offset

Segment numbers range
from 0000 to FFFF

Within a segment, a
particular memory location
is specified with an offset

An offset also ranges from
0000 to FFFF

Segmented Memory

B8000:FFFF

One Segment

8000;0250

linear addresses

8000:0C000

I

13

1/7/2022

Segment Registers

* A Segment Register contains the
Starting location of a segment.

*CS : Code Segment
* DS : Data Segment
* ES : Extra Segment

*SS : Stack Segment

Memory Address Generation

« The CPU has a dedicated adder for determining
physical memory addresses

- Offset Value (16 bits) -’

14

Address Calculation : Example 1

e If DS =1000h and Offset =29h,
« Where is the actual data?

2 9

A S A—

Offset: 0000000000101001
Segment: 0001000000000000[TIIIP
Address: E

Address Calculation : Example 2

* The physical address of the logical

address 1S

A4FBO h
+ 48172 h =
A9822 h

1/7/2022

15

1/7/2022

Address Calculation : Example 3

« If DS=T7FA2 , Offset=438E
a) Calculate Physical Address.

b) Calculate the lower range of the
data segment.

c) Calculate the upper range of the
data segment.

d) Show the logical address.

Example

If DS=7FA2H and the offset is 438EH
a) Calcuiate the physical address

7FA20 + 438E = B3DAE

b) calcutate the lower range

7FA20 + 0000 = 7FA2

c) Calculate the upper range of the

7FA20 + FFFF = 8FA1

d) Show the logical Address

TFA2.438E

16

1/7/2022

Address Calculation : Example 4

What segment addresses correspond to the
linear address 28F30h?

Many different segment-offset addresses .For
example:

28F0:0030, 28F3:0000, 28B0:0430, . . .

The Code Segment (CS)

* Instructions are always
fetched with using the CS
register.

 The offset is given by the IP
for the Code Segment.

e CS:IP

17

Example 1:
CS:IP=0400:0056

Memory

Segment Register EI

Offset +
Physical or

Absolute Address

The Data Segment (DS)

« Datais usually fetched with
respect to the DS register.

DS:data address

1/7/2022

18

1/7/2022

The Extra Segment (ES)

« ESislike DS. It is usually
used for string operations.

ES:data address

The Stack Segment (SS)

The stack is always
referenced with respect to the
SS register.

The offset is given by the SP
register.

SS:SP

The stack usually used for

storage of temporary data.

19

Stack

e LIFO :Last In — First Out

\< Last In - First Out /

Push

| Dats Emevert
‘ Data Fmvenes
|| Dosa Ewrare
| DamEwevert

| Deta Enevert

Stack

1/7/2022

20

1/7/2022

Stack in X86 Architecture

The stack grows toward
decreasing memory
locations(Lower Addresses).
The SP points to the last or top
item on the stack.

PUSH : Decrement the SP
POP : Increment the SP

Example : SS:SP

Segment Register
Offset

Physical Address FFFFFH

21

1/7/2022

General Purpose 0 Pointer

EH I AL

BP

07 SP
[

Segment

CS

Status and Control S5

Flags Ds

Pointer Registers

Contain the offset addresses of memory
locations

SP (Stack pointer)
* Used with SS to access the stack.

 SS:SP

BP (Base Pointer)
* Primarily used to access data on the stack.

22

1/7/2022

Index Registers

» SI (Source Index register)

— is required for some string operations

— Sl is associated with the DS. DS:SI
» DI (Destination Index register)

— is also required for some string operations.

— Dl is associated with the ES. ES:DI

* The SI and the DI registers may also be used to
access data stored in arrays

General Purpose o Pointer

AH T AL BP

07 sSP
[

Segment

CS

Status and Control

Flags

23

Flags Register

6 are status flags. (important: C ,.Z, S, O)
3 are control flag. (important : |)

15 14 13 12 11 10 9 8 3 2 10
T-T-T- T [ITT STz]-T-TATP [-T¢]
L

Carry
Parity
Auxiliary
Zero

Sign

Trap
Interrupt
Direction
Overflow

C: Carry flag

Carry flag will be set
whenever there is a carry.
Example : AL=T7T7h.

AL + 50h = CTh. - C=0
AL + 50h = 17h. 2> C=1

1/7/2022

24

1/7/2022

Z: Zero Flag

The zero flag will be set (Z=1)
whenever the result is zero.
Example :

AL=10h.

AL + FOh=00h, —»> Z=I

S: Sign flag

Sign flag will be set whenever the
result is negative. S shows MSB.
Example :

AL=-20=ECh=1110 1100b
+5=05h=0000 0101b

AL + 05h = -15=F1h= 111 0001b =
S=1

25

1/7/2022

S: Sign flag ...

Example 2:
AL=+119=77h=01110111b
+80=50h=0101 0000b

AL + 50h = C7h=11000111b - 5=1

C7h=199 >127
How to detect this error?

O: Overflow flag

Overflow flag will be set whenever the
result of signed operations is overflow.
Example :

AL range=(-128,+127)=(80h,7F)
AL=119=7T7h.

AL + 50h = C7Th=199 > (+127) > O =1

26

1/7/2022

| . Interrupt flag

I= 0 - Disable hardware Interrupt.
I=1 - Enable hardware Interrupt.

More flags

A: Auxiliary flag contains carry out of bit 3 into
bit 4 (Lower nibble to higher nibble) for
specialized arithmetic.

P:Parity flag will be set whenever the number
of bit*“1” are even.

D: Direction flag is used to specify direction
(increment/decrement index register) in string
operation.

T:Trap flag is used to interrupt CPU after each
operation.

27

1/7/2022

General Purpose 0 Pointer

EH I AL

BP

07 SP
BH I

Sl

D1

Segment

CS

Status and Control

Flags

8086 Addressing Modes

Implied
Immediate
Register

Direct

Register Indirect
Direct Indexed
Base Indexed
Base Relative

28

1/7/2022

1. Implied Addressing

No need to address or address is
implied in instruction.

Examples : (No need to Address)
HLT HALT the CPU
NOP No Operation!

Examples : (Address Implied)

Flag set/reset instructions

Carry flag

STC C=1

CLC C=0

CMC C > C’ (Complement Carry)
Direction flag

STD

CLD
Interrupt flag

STI

CLI

29

1/7/2022

Flag Transfer instructions

Load AH with Flags. AH< Flags
LAHF

Store AH to Flags. Flags<AH
SAHF

Push Flags to Stack.
PUSHF

Pop Flags from Stack.
10)23

2. Immediate Addressing

An 8 Bit or 16 Bit constant is in
Instruction.
Examples :
MOV AL,-30 AL< - 30
MOV CX,500 CX< 500

30

1/7/2022

3. Register Addressing

Both the operands are registers
Example :

MOV BL,AL BL& AL
\[GAVAIDISIAY ¢ DS<AX

MOV Instruction

MOV destination , source

source to destination.
destination=source , source
unchanged

31

1/7/2022

4. Direct Addressing

The memory address is directly
given in the instruction
Example :

MOV AX,[0200n]

AX €& value stored in memory
location DS:0200

5. Register Indirect Addressing

The memory address is in a register.
Example :

MOV AX,[BX]

AX € value stored at memory address
contained in DS:BX

Only BX,BP,SI,DI can be used !

If register is SI, DI and BX then DS is by
default segment register.

If BP is used, then SS is by default segment
register.

32

1/7/2022

6. Direct Indexed Addressing

Uses an index register(DI or Sl)
Useful for accessing elements in a
table(array).

Example : we have a TABLEL array.
MOV DI,2

MOV AL, TABLE1[DI]

AL € The element of TABLE1

Table elements start with O.

How to define TABLE1 ?

Use DB directive (Define Byte).
Directives are commands to the
assembler ,rather than to the CPU.

Examplel : define TABLE1=(1,2,3,4).
TABLE1 DB 1,2,3,4

Example2 : define TABLE1=(1,1,1,1).
TABLE1 DB 4 DUP(1)

33

1/7/2022

1. Base Indexed Addressing

The operand address is calculated as base
register(BX) plus an index register (DI or Sl).
Useful for accessing elements in a 2
dimensional table(array).

Example :
MOV BX,2
MOV DI, 1

MOV AL,[BX][DI] (or MOV AL,[BX+DI])
AL < value stored in memory location
DS:2+1

8. Base Relative Addressing

The operand address is calculated
using one of the base registers (BX
or BP)and an 8 bit or a 16 bit
displacement.

Example :
MOV CL,[BX+04H]
CL «— DS: [BX + 04H]

34

1/7/2022

Question

MOV [7000H],CL

Instruction Set Classification

Data Transfer
Arithmetic

Logical

Control and Branch
String

35

Data transfer instructions

Input byte or word from port

Move to/from registexr/memory
Output byte or word to port
Pop word off stack

Push word onto stack

Exchange byte or word

Data transfer : MOV

MOV Dest, Src

MOV reg, reg
MOV reg, mem
MOV mem, reg
MOV reg, imm
MOV mem,]

1/7/2022

36

1/7/2022

MOV limitations

Both operand must be in the same size.
There is no instruction to put immediate
value directly to a segment register. Have
to use accumulator (AX) to accomplish
this.

There is no move mem< mem
instruction. Have to use general registers
to do this.

MOV Examples

MOV AX,1234h
MOV DX, 5678h
MOV AL,DL
MOV BH,DH
MOV DX, BX

MOV [100h],AX
MOV BX, [100h]

MOV AX,2300h
MOV DS, AX

37

1/7/2022

MOV Examples

MOV AX,1000h

MOV AL, 3Ah
AX
[103Ah

MOV AX,234h

‘Iax

234h

Examples

AX,6789%h DS:100h
DX,1234h DS:101h
[100h] ,AX pc.q02n
[102h] ,DX
[(104h] ,AH
[105h] ,DL
BX, [104h]
CX, [103h]
[106h] ,CL

Given only offset where to put value, it will be
automatically select DS as the segment register.

38

1/7/2022

MOV Examples

MOV [100n],AX

67 89]
AX,6789h

DX,1234h MOV [102h],DX

[100h] , AX (12 [34]

[102h] ,DX
[104h] ,AH [MOV [104h],aH

[105h] ,DL Kl
BX, [104h] MOV [105h],DL

X, [103h]
34
[106h] , CL [a]—
MOV BX, [104h]

MOV CX, {103h]

MOV Examples
AX =7

AX,102nh
BX, 100n
CcCX,4004n
DX, 1201h
[BX] ., aX
[BX+2] ,CX
[BX+3] , DX
[BX+4] ,BX
BX, [LOo2nh]
AX, [BX]

39

MOV Examples
AX =0100h AX,102h

BX,100h
CX,4004h
DX,1201h
[BX],AX
[BX+2],CX
[BX+3],DX
[BX+4],BX
BX, [102h]
AX, [BX]

MOV Examples

MOV [100h] , 10h
Address 100h = 10h
What about address 101h?
Word or Byte? To put immediate value
directly to memory, we have to specify its
size. (Byte/Word PTR)

MOV BYTE PTR [100h], 10h

MOV WORD PTR [100h], 10h

1/7/2022

40

eXCHanGe

XCHG target, source
reqg, reg
reg, mem
mem, reg

Examples:

XCHG AH,BL
XCHG CX,DX

PUSH , POP

1/7/2022

This provides an
efficient means to
swap the operands

No temporary storage
is needed

Sorting often requires
this type of operation
This works only with
the general registers
XCHG cannot perform
memory to memory
moves

PUSH source(l6 bit)
Example: PUSH AX

POP destination (16 bit)
Example: POP DX

41

INPUT/OUTPUT(I/O)

I/0 devices (such as
Keyboard,
speaker,modem,..) allow
the CPU to communicate
with the outside world.
The 8086 communicates
with I/0O devices through
special circuits callled

ports.

INPUT/OUTPUT(1/0)

Each port identifies by a
number.I/O port number is
similar to a memory
address

There are 65,536 (64K) I/O
ports available.

Circuit design identifies
Port numbers.

1/7/2022

42

1/7/2022

IBM PC I/0O Space

The area below I/0 location 0400H is
considered for system devices.

Examples:

60H Keyboard.

61H Buzzer.

IFOH Master HDD Controller.

201H Joystick.

3FOH Floppy Disk Controller.
Area available for expansion by

(such as Modems,Network Cards)

extends from I/O port 0400H through
FFFFH.

INput

IN AX,PortNumber (16 Bit)
IN AL,PortNumber (8 Bit)

PortNumber is between 0 and 255,
refers to device address.
For addressing 64K Ports,Use:

MOV DX, PortNumber
IN AX, DX
IN AL, DX

43

1/7/2022

OUTput

OUT PortNumber,6 AX (16 Bit)
OUT PortNumber,6 AL (8 Bit)

PortNumber is between 0 and 255,
refers to device address.
For addressing 64K Ports,Use:

MOV DX, PortNumber
OUT DX, AX
OUT DX, AL

Data transfer instructions

Input byte or word from port
Move to/from registexr/memory
Output byte or word to port

Pop word off stack

Push word onto stack

Exchange byte or word

44

1/7/2022

Arithmetic instructions

INC Increment byte or word by one

DEC Decrement byte or word by one

NEG Compute 2’s complement of byte or word
ADD Add byte or word

ADC Add byte or word plus carry

SUB Subtract byte or word

SBB Subtract byte or word and carry (borrow)
MUL Multiply byte or word (unsigned)

IMUL Multiply byte or word (Signed)

DIV Divide byte or word(unsigned)

IDIV Divide byte or word(Signed)

CBW Convert byte to word

CWD Convert word to double-word

CMP Compare byte or word

Increment (+1), Decrement(-1)

INC / DEC

INC register DEC register
INC memory DEC memory

Examples:
INC AX AX ¢« AX+1
DEC BL BL < BL -1
INC [100h] [100h]€ [100h]+1

45

Negation

Compute 2’s complement.

NEG reg
NEG mem

Example

MOV
NEG
MOV
NEG
MOV
NEG

CX, 10h

CX

AX, OFFFFh ;
AX

BL, 1

BL

1/7/2022

46

1/7/2022

ADD

ADD destination,source
destination<destination+source

ADD reg, imm
ADD reg, mem
ADD reg, reg
ADD mem, imm
ADD mem, reg

Add plus Carry(ADC)

ADC destination,source
destination < destination+source+carry

ADC reg, imm
ADC reg, mem
ADC reg, reg
ADC mem, imm
ADC mem, reg

47

1/7/2022

Example :

MOV AL, 10h
ADD AL, 20h
MOV BX, 200h
MOV AH, 85h
ADD AX, 9876h

ADC BX, 0O1lh

Subtract

SUB destination,source
destination< destination-source

SUB reg, imm
SUB reg, mem
SUB reg, reg
SUB mem, imm
SUB mem, reg

48

1/7/2022

Subtract with borrow

SBB destination,source
destination < destination-source-carry

SBB reg, imm
SBB reg, mem
SBB reg, reg
SBB mem, imm
SBB mem, reg

Example

MOV AL, 30h
SUB AL, 20h
MOV BX, 9876h
MOV AX, 8930h
ADD AX, BX

SBB BX, 0001lh

SBB BX, 0001lh

49

1/7/2022

Multiplication

MUL (Multiply unsigned)
MUL reg
MUL mem

IMUL (Multiply signed)
IMUL reg
IMUL mem

Always perform with accumulator(AX).

8 bit multiplication

Al is multiplicand

AX keep the result

Example :

MOV AlL,15 ; AL = OFh

MOV CL,-10 ; CL = F6h

IMUL CL ; AX = FF6Ah= -150D

MOV AL, 15 ; AL = OFh
MOV CL,-10 ; CL = F6h=246D
MUL CL ; AX = OE6Ah=3690D

50

1/7/2022

16 bit multiplication

AX is multiplicand

DX:AX keep the result

Example :

MOV AX,0100h ;AX =0100h

MOV BX,1234h ;BX = 1234h

MUL BX ; DX =0012h
; AX = 3400h

Division

DIV (Unsigned division)
DIV reg
DIV mem

IDIV (Signed division)
IDIV reg
IDIV mem

Always perform with accumulator.

51

1/7/2022

8 bit division

Al is dividend
AL keep the result
AH keep the remainder

Example :

MOV AL, 23 ; AL = 17h = 23D

MOV BL, -16 ; BL= FOh =-16D

IDIV BL ; AL= FFh =-1D
; AH = 07h

16 bit division

DX:AX dividend.
AX keep the result, DX keep the remainder.

Example:
MOV AX,86A0h ;AX=86A0h
MOV DX,0001h ;DX=0001h
; DX:AX=0001 86A0h=100 000D
MOV CX,0EA60h ; CX=EA60h=60 000D
DIV CX ;AX = 0001h
;DX = 9C40h=40 000D

52

1/7/2022

Data Conversion

Convert Byte to Word : CBW
Signed convert AL -> AX

Convert Word to Double word : CWD
Signed convert AX -> DX:AX

Example

MOV AL, 22h
CBW

MOV AL, OFOh ; AL=FOh=-16D
CBW :

MOV AX, 3422h ; AX=3422h
CWD -

53

1/7/2022

Compare

CMP destination,source
CMP reg, imm

CMP reg, mem

CMP reg, reg

CMP mem,imm

CMP mem, reg

CMP dose not changes values of source

or destination.
CMP affects flags.

Examples:

MOV CX, 10h
CMP CX, 20h

MOV BX, 40h
CMP BX, 40h

MOV AX, 30h
CMP AX, 20h

54

Flag affection

Flag affected

Instruction C-flag | S-flag

ves ves
ves ves
ves yves
ves ves
no ves
no ves
ves
ves
no
no
no
no
no
no

Logical NOT of byte or word

Logical AND of byte or word

Logical OR of byte or word

Logical exclusive-OR of byte or word

Logical shift left byte or word
Logical shift right byte or word

Arithmetic shift left byte or word
Arithmetic shift right byte or word

Rotate left byte or word
Rotate right byte or word

Rotate left trough carry byte or word
Rotate right trough carry byte or word

Test byte or word

1/7/2022

55

1/7/2022

NOT

NOT destination

NOT reg

NOT mem

Flags are unaffected.

Example :

MOV AX,OFFFFh ;AX=FFFFh
NOT AL ; AX=FFOOh
NOT AX ;AX=00FFh
NOT WORD PTR [0120h]

AND,OR,XOR

AND destination,source
AND reg, imm

AND reg, mem

AND reg, reg

AND mem, imm

AND mem, reg

Flags Affection: CF=0, OF=0,
ZF,SE,PF changes.

56

Application : Masking

Selective Set
Selective Reset
Selective Complement

Example:

MOV AlL,11110000B
MOV BL,00001010B
OR AL,BL

MOV BL,00111111B
AND AL,BL

MOV BL,00000011B
XOR AL,BL

SHL,SHR

SHL destination,count

SHR destination,count

Destination : reg, mem
Count:1,CL

;AL=11110000B
;BL=0000 O OB
;AL=1111 O OB
;BL= 111111B
;AL= 111010B
;BL=000000 B
;AL=001110 B

1/7/2022

57

1/7/2022

Examples:

MOV AL,10001000B ;AL=10001000B

SHL AL,1 ;AL=00010000B
;CEF=1

MOV CL, 4

SHR AL, CL ;AL=00000001B
; CF=0

SAL,SAR

SAL destination,count

SAR destination,count

Destination : reg, mem
Count:1,CL

58

1/7/2022

Examples:

MOV AL, 2 ;AL=2
SAL AL,1 ;AL=4 , CF=0

MOV AL, -2 ;AL=-2=FEh
SAL AL,1 ;AL=-4=FCh ,

SAL : x 2 (Doubling wvalue)

Examples:

MOV AL, 8
MOV CL, 2
SAR AL, CL

MOV AL, -4 ;AL=-4=11111100B
SAR AL, 1 ;AL=-2=FEh , CF=0

MOV AL, 5 ;AL=5=00000101B

SAR AL, 1 ;AL=2=00000010B
;CEF=1

SAR : / 2 (Halving value)

59

ROL,ROR

ROL destination,count
ROR destination,count
Destination : reg, mem
Count:1,CL

RCL,RCR

RCL destination,count
RCR destination,count
Destination : reg, mem
Count:1,CL

1/7/2022

60

1/7/2022

Examples:

MOV AL,10001000B ;AL=10001000B

ROL AL,1 ;AL=00010001B
;CF=1

RCL AL,1 ;AL=00100011B
;CF=0

Exercise 4.A:

Using SHIFT instructions, Write
a program to double a 32 bit
value stored in DX:AX.

61

1/7/2022

TEST

TEST acts like AND ,
but does not change values,
only sets the flags

Flags Affection: CF=0, OF=0,
ZF,SEF,PF changes.

Examples:

MOV AL, 00000101B ;AL=00000101B

TEST AL, 00000001B ; AL=00000101B
ZF =0

TEST AL, 00000010B ;AL=00000101B
ZF =1

62

1/7/2022

Exercise 4.B:

Using TEST, write a program to
check that bits 0,3,6,7 of AL
are all ‘1’ (ZF=1l) or not
(ZF=0) .

Control and Branch instructions

JMP
Jxx

LOOP
LOOPZ
LOOPE
LOOPNZ
LOOPNE

Unconditional Jump
Conditional Jumps

Loop CX times
Loop if Zero
Loop if Equal
Loop if Not Zero
Loop if Not Equal

63

Control and Branch instructions...

Call a Procedure
Return from a Procedure

Clear Interrupt Flag
Set Interrupt Flag
Interrupt

Interrupt Return

No Operation
Halt

JMP

JMP Label
Unconditional Jump to Label

Quit: MOV AlL,10h

1/7/2022

64

1/7/2022

Jxx

Jxx Label
Conditional Jump to Label

Jumps based on Flags

Jumps based on Unsigned Data
Jumps based on Signed Data
Jump based on CX register

Jump 1t Zero

Jump 1 Not Zero

Jump it Overflow
J. if Not Overflow

Jump 1t Carry

Jump 1t No Carry

Jump if Sign

Jump it No Sign

Jump i1t Parity Even
Jump if Parity Even
Jump if Parity Odd
Jump i1if Parity Odd

65

1/7/2022

Jumps based on Unsigned Data

JE Jump if Equal ZF=1

JNE Jump in Not Equal ZF=0

JA Jump if Above (CF=0 and ZF=0)

JAE Jump if Above or Equal CF=0

JB Jump if Below CF=1

JBE Jump if Below or Equal (CF=1 or ZF=1)

JNBE =JA (Not Below or Equal)
JNB =]JAE (Not Below)
JNAE =]B (Not Above or Equal)
JNA =]BE (Not Above)

Examples:

MOV AL,’'A’ ;AL=41h
CMP AL,’B’ ;CF=1,ZF=0
JB Labell ; True

JA Label2 ;False

66

1/7/2022

Jumps based on Signed Data

JE Jump if Equal ZF=1
Jump in Not Equal ZF=0
Jump if Greater (ZF=0 and SF=OF)
Jump if Greater or Equal SF=OF
Jump if Less SF<>OF
Jump if Less or Equal (ZF=1 or SF<>OF)

=]G (Not Less or Equal)
=]JGE (Not Less)

=]JL (Not Greater or Equal)
=JLE (Not Greater)

Examples:

MOV AL, -5 ;AL=-5=FBh

CMP AL, -7 ;CF=0,2F=0
; OF=0,SF=0

JG Labell ; True

JLE Label2 ;False

CMP AL,1
JG Labell ;False
JLE Label2 ; True

67

1/7/2022

Jumps based on CX Register

JCXZ Label
Jump to Label if CX=0

Loop

LOOP Label
Loops CX times (Until CX<>0).

Example :
MOV CX,3
MOV AL,0 ;,AL=0
MOV BL,0 ;BL=0

ADD AL,10

ADD BL,20
LOOP

;AL=30 , BL=60

68

1/7/2022

Example :

initialization

jcxz endloop
labell:

actions

loop labell
endloop:

Conditional Loops

LOOPZ Label
LOOPE Label
Loops if CX<>0 and ZF=1.

LOOPNZ Label
LOOPNE Label
Loops if CX<>0 and ZF=0.

69

Example:

MOV CX,3

MOV AL, ;AL=0

MOV BL,0 :BL=0
ADD AL,10
ADD BL,20

;AL=10 , BL=20

CALL , RET

CALL ProcedureName
Calls a Procedure.

RET
Returns from a Procedure.

Return Address will be saved in Stack.

1/7/2022

70

1/7/2022

How to Define a Procedure

ProcName PROC NEAR

ProcName ENDP

ProcName

Example:

Add7 PROC NEAR
ADD AL,7
RET

Add7 ENDP

71

1/7/2022

Interrupt

Stop a running program, save the
state, and allows a special
program(an Interrupt Service
Routine [ISR]) to run instead, then
return to main program and restore
the state.

Mainly used for I/O Operations
(generally better than polling).

I\[e]slel=R

In applications where loss of data
cannot be tolerated (e.g. where safety
would be affected) the designer must
ensure that all of the devices can be
properly serviced under worst case
conditions. In some of these systems it
may be easier to use polling to help
ensure correct worst-case behaviour.

72

1/7/2022

Interrupt Types

Hardware
Maskable
Nonmaskable

Software
BIOS

IDJOR
CPU exceptions (traps)

Hardware Interrupt

8086 CPU

Tt

RERREEER:

73

1/7/2022

NMI

Non Maskable Interrupt

Can Not be Disabled.

Highist priority.

For Critical situations,such as:
System Overheating
Reactor Overpressure

NMI always generates Interrupt
No. 2.

INTR

Maskable Interrupt
Can be Disabled by: CLI
Clear Interrupt Flag (IF=0)
And Enabled by : STI
Set Interrup Flag (IF=1)
Priority lower than NMI.
INTA: Interrupt Acknowledge.
After Acknowledgement, External device
sends required interrupt Number over
data bus.

74

1/7/2022

Question: What if we have many I/0
devices?

Solution : Use Programmable
Interrupt Controller (PIC).

8259 PIC

INT IR0

INTA IR1
IR2

T

from peripherals

T

IR7

INTR, Examples

In IBM PC:

Keyboard : Interrupt No. 9
Serial Port (used for
mouse,Modem ,...) : Interrupt
No. 12

Parallel Port (used for printer) :
Interrupt No. 15

75

1/7/2022

Software Interrupts

Interrupts that triggered by
software(code).

Applications:
Test ISRs
Use ISRs (System Calls)
CPU Error handling.

Software Interrupt Types

BIOS (Basic Input-Output System)
ISR is in System ROM (EPROM)
DOS (Disk Operating System)
ISR is in System RAM,read from Disk.

CPU exceptions (traps)

A exceptional condition in the CPU
generates the interrupt.

76

1/7/2022

INT

INT intNumber

intNumber is between 0 and 2585.
There are 256 ISRs. Their begining
addresses calld ‘Interrupt Vector’s.

Interrupt Vector Table(IVT)

The IVT consists of 256 four-byte
pointers, always resides at the first
1KB of memory, ranging from 00000h
to OO3FFh.

Example : Interrupt Number 2(INMI),

ISR Vector ?

2x4=8=8h

ISRVector: Offset =[00009h:00008h]
Segment= [0000Bh:0000Ah]

77

1/7/2022

I\[e]slel=R

The 8086 operates beginning
with the instruction in absolute
location FFFFOh of memory ,
NOT from location 00000 !

How to transfer to ISR

Push to stack:
flags register
CS
IP (Return address)
Use Interrupt Vector :

IP is loaded from the contents of the word location
‘intNumber’ X 4

CS is loaded from the contents of the next
word location.

IF=0

78

How to Return from ISR

IRET
Interrupt Return
Must be used in the end of ISR.
Pops from stack:
IP
CS
flags register

Enable interrupt (IF=1).

Example: INT 10h (BIOS)

INT 10h / AH = OEh - Character output.

AL = character to write.

this functions displays a character on the
screen, advancing the cursor and scrolling
the screen as necessary.

example:
MOV AL, ‘N*
MOV AH, OEh
INT 10h

1/7/2022

79

1/7/2022

CPU exceptions (traps)

A exceptional condition in the CPU
generates the interrupt.

Example 1 :Divide by Zero

Generates Interrupt No. O

ISR Vector : Offset : [00001h:00000h]
Segment : [00003h:00002h]

Example 2 : Invalid Opcode

Generates Interrupt No. 6

ISR Vector : Offset : [00019h:00018h]
Segment : [0001Bh:0001Ah]

NOP

NOP

No Operation

Applications:

As a place holder in machine
code.

To create delay for purpose of
timing.

80

HLT

HLT
Enter Halt State
CPU halts, waiting for an interrupt.

String instructions

MOVSB Move byte string
MOVSW Move word string

CMPSB Compare byte string
CMPSW Compare word string

SCASB Scan byte string
SCASW Scan word string

LODSB Load byte string
LODSW Load word string

STOSB Store byte string
STOSW Store word string

REP Repeat
REPE (REPZ) Repeat while equal (zero)
REPNE (REPNZ) Repeat while not equal (not zero)

LEA Load Effective Address

1/7/2022

81

1/7/2022

String

A set of Characters (Bytes or Words)
Examples: ‘Nader’ , ‘aB91%’
Registers Implied :
DS,SI & DS:SI used for Source String
ES,DI & ES:DI used for Destination String.
AL,AX
DF (Direction Flag)
Useful for Text Editing and Database
Applications.

LEA

Load Effective Address

LEA reg,StringName

Reg=Offset Address of StringName
Examples:

0700:0100h LEA SI,strl
0700:0103h strl DB ‘Nader’
SI=0103h

82

1/7/2022

NEE

String instructions reference only ONE
Byte or ONE Word.

For repeated execution of string
instructions
(MOVSB,MOVSW,LODSB,LODSW,STOSB,
STOSW), use REP prefix.

CX : Number of repetations.

DF

The Direction Flag determines the
direction of a repeated operation:
DF=0 : Process string from Left to Right
DF=1 : Process string from Right to Left.
To set Direction :

CLD :Clear D (DF=0)

STD :SetD (DF=1)

83

1/7/2022

MOVSB : Move Byte String

Copy byte at [DS:SI] to [ES:DI]. Update SI
and DI.
[ES:DI] = [DS:SI]

if DF = 0 then
SI=SI+1
DI=DI+ 1
else
SI=SI-1
DI=DI-1

MOVSB : Example

CLD

LEA SI, al

LEA DI, a2

MOV CX, 5

REP MOVSB

HLT

al DB ‘Nader’ ;al="Nader’
a2 DB 5 DUP(0) ;a2='00000’

a2=‘Nader’

84

MOVSW : Move String Word

Copy word at [DS:SI] to [ES:DI]. Update SI
and DI.
[ES:DI] = [DS:SI]

if DF = 0 then
SI=SI+2
DI=DI+ 2
else
SI=SI-2
DI=DI-2

MOVSW : Example

CLD
LEA SI, al

LEA DI, a2

MOV CX, 2

REP MOVSW

HLT

al DW 1,2 :a1=01000200h
a2 DW 2 DUP(0) :a2=00000000h

a2=01000200h

1/7/2022

85

1/7/2022

CMPSB : Compare String Byte

Compare bytes: [ES:DI] with [DS:SI]. Update SI
and DI.
Calculates [DS:SI] — [ES:DI]

set flags according to result:
OF,SF, ,AF PFCF

if DF = 0 then
SI=SI+1
DI=DI+1
else
SI=8I-1
DI=DI-1

CMPSW : Compare String Word

Compare words: [ES:DI] with [DS:SI]. Update SI
and DL
Calculates [DS:SI] — [ES:DI]

set flags according to result:
OF SF, ,AFPFCF

if DF = 0 then
SI=SI+2
DI=DI+ 2
else
SI=SI-2
DI=DI-2

86

1/7/2022

REPZ / REPE

Repeat following string instructions while
ZF = 1 (result is Zero, Equal), maximum
CX times.

If ZF=0 or CX=0 the EXIT from repetition
cycle.

Can be used for CMPSB, CMPSW, SCASB,
SCASW instructions.

REPNZ / REPNE

Repeat following string instructions while
ZF = 0 (result is NOT Zero, NOT Equal),
maximum CX times.

If ZF=1 or CX=0 the EXIT from repetition
cycle.

Can be used for CMPSB, CMPSW, SCASB,
SCASW instructions.

87

1/7/2022

CMPSB : Example

namel=‘Nader’
name2=‘Naser’
namel=name2 ?

CLD

LEA SI, namel

LEA DI, name2

MOV CX, 5
CMPSB

HLT

namel DB ‘Nader’ 'namel='Nader’
name2 DB ‘Naser’ ‘name2="Naser’

SCASB : Scan Byte String.

Compare bytes: AL with [ES:DI]. Update DI.
Calculates AL — [ES:DI]

set flags according to result:
OF,SF, ,AF, PEF,CF

if DF = O then
DI=DI+1
else
DI=DI-1

88

1/7/2022

SCASW : Scan Word String.

Compare words: AX with [ES:DI]. Update DI.
Calculates AX - [ES:DI]

set flags according to result:
OF,SF, ,AF, PEF,CF

if DF = O then
DI=DI + 2
else
DI=DI-2

SCASB : Example

namel=‘Nader’
find first ‘e’ in namel.

CLD
LEA DI, namel
MOV AL,e’
MOV CX, 5
SCASB
HLT
namel DB ‘Nader’ :namel="'Nader’

89

1/7/2022

LODSB : Load Byte String.

Load byte at [DS:SI] into AL. Update SI.
AL = [DS:SI]

if DF = O then
SI=SI+1
else
SI=SI-1

LODSW : Load Word String.

Load word at [DS:SI] into AX. Update SI.
AX = [DS:SI]

if DF = O then
SI=SI+2
else
SI=SI-2

90

1/7/2022

LODSB : Example

namel=‘Hello’
Display namel in screen using INT 10h.

CLD
LEA SI, namel
MOV CX, 5
MOV AH, OEh
m: LODSB
INT 10h
LOOP m
HLT
namel DB 'Hello'

1Al Job L 2 a 4l) Glulal -5 pa

Ok b (8 40)l S 4S sy s) 4l
.La.m‘yd.\ﬂ‘)\é_\\‘)‘djja‘;uu)umbjo\jﬂd
J\bd\ﬂ.\u\b\)(o o3 Aald p
a0 (i _Sdulel 55 » INT 10h

= pladl S as 4ali s ja 4S 2y i
A

‘5_1);“14\3 a‘)l.mz)éd\)li eu

91

1/7/2022

STOSB : Store Byte String.

Store byte in AL into [ES:DI]. Update DI.
[ES:DI] = AL

if DF = O then
DI=DI+1
else
DI=DI-1

STOSW : Store word String.

Store word in AX into [ES:DI]. Update DI.
[ES:DI] = AX

if DF = O then
DI=DI+ 2
else
DI=DI-2

92

1/7/2022

STOSB : Example

namel="AAAAA’
Define namel using STOSB.

CLD

LEA DI, namel
MOV AL, ‘A’

MOV CX, 5

REP STOSB

HLT

namel DB 5 dup(0)

Assembly Program Statements

Label: operation operand(s) ;comment

Example:
START: MOV AX,6BX ;Copy BX to AX

Space or tab separates fields.

Comments does not generate any machine
code.

Mazx. length of each line=128 Characters.

93

Labels

Can use:

atoz

AtoZ

Oto9

Maximum length = 31 Characters
Must be start with an alphabet.

Can NOT be a reserved word.
Meaningful , short labels are better!

ORG

ORG number

Defines the beginning point of
program in memory.

COM programs always begin in
100h.

Example :

ORG 100h

MOV AL,30

1/7/2022

94

1/7/2022

Define memory contents

DB - byte(s)

DW - word(s)

DD - double word(s)
DQ - quad word(s)

To define a Character or string,use‘ or “
Example: S1DB ‘A’

S1l: 41h (ASCII code of Character ‘A’)
A ? represents an uninitialized storage
location. Example :

D2 DB ?
D2 : O00h

Arrays

Any consecutive storage locations of the
same size can be called an array

X DB 'This is an array'

Y DW 40CH,10B,-13,0

Z DD -109236, FFFFFFFFH, -1, 100B
Components of X are at X, X+1,X+2,X+3,...,X+15
Components of Y are atY,Y+2,Y+4,Y+8
Components of Z are at Z,Z+4,7Z+8,Z+12

95

1/7/2022

Addressing Arrays

Example :
MOV AL,b ; AL=10h
MOV AL,b+1 ; AL=20h

b DB 10h,20h,30h

The assembler computes an address based on

the expression.
NOTE: These are address computations done at assembly
time
MOV AL, b+l
will not Add 1 to the value stored at b

Word Storage

Word, double word, and quad word data are
stored in little endian format in memory.
Examples:

Directive Bytes in Storage

sO0 DW 35DAh DA 35

S1 DW 256 00 01

S2 DD 1234567H 67 45 23 01

S3 DQ 10 oA 00 00 00 00 00 00 OO

96

DUP

Allows a sequence of
storage locations to be
defined or reserved

Examples :

S1 DB 8 DUP (5)

S2 DB 5 DUP (?)

S3 DB 3 dup ("AB")

Named Constants

07104:
07105:
02106:

2102;

1/7/2022

o s S
0% 005 $
05 005 &

N
J
]

9: 00 000 NULL
Y108+ 00 000 NULL S 2
| B: 00 000 NULL

IFS{IIE
(710E:
0710F:
07110:
07111:

00_000 NULL
uos
42 066 B
41 065 A
42 066 B
41 065 R

s3

Named constants are symbols

created to represent specific values
determined by an expression

Named constants can be numeric or
string
No storage is allocated for these
values

97

1/7/2022

EQU Directive

name EQU expression
expression can be string or numeric
Use ‘ or “ to specify a string
these symbols cannot be redefined later in the
program
Examples:
sample EQU 7Fh
aString EQU “1.234"
message EQU ‘'‘This is a message’

Example

FACTOR EQU O03H
ADD AL,FACTOR
; will code as ADD AL, 03H

The advantage of using EQU in this manner
is, if FACTOR is used many times in a
program and you want to change the value,
all you had to do is change the EQU
statement at beginning, it will changes the
rest of all.

98

1/7/2022

Macros

A group of instructions that perform one

task, just as a procedure.
a procedure is accessed via a CALL instruction

a macro & all instructions defined in the macro,
is inserted in the program at the point of usage

Macros execute faster than procedures
because there is no CALL or RET instruction
to execute.

Why use Macros?

To simplify assembly coding.
To make the program more
readable.

‘To reduce errors caused by
repetitive coding.

99

1/7/2022

MMacro Definition

Macroname MACRO parameters

Assembly code
Assembly code

It’s better to define macros in the beginning
of code.

Macro Example :

A simple macro to add 2 numbers:

Add2 MACRO nbrl , nbr2
MOV AlL,nbrl - first number
ADD AlL, nbx2 : second number
ENDM

Using this Macro :
Add2 12h,20h
Add2 40h,50h

100

1/7/2022

Macro expansion:

MOV AL,12h
ADD AL,20h

MOV AL,40h
ADD AL,50h

LOCAL variables

A local variable is one that appears in the
macro, but is NOT available outside the
IMacro.

to define use the LOCAL directive

The LOCAL directive must always be used
on the line immediately following the
MACRO statement.

The LOCAL statement may have up to 35
labels, all separated with commas.

LOCAL labell,label?, ...

101

1/7/2022

Example :

A simple macro to find minimum of two values :

Min2 MACRO first, second

LOCAL endcmp
; put smaller of two words in the AX register

MOV AX, first ; first value
CMP AX, second ; Compare
JLE endcmp ; exit if so
MOV AX, second ; otherwise

endcmp: NOP

ENDM

Macro Libraries

Macro definitions can be placed in the
program file or ,a file can be created that
contains only macros.

To be included with other program files, Use
the INCLUDE directive to indicate a program
file will include a module that contains
external macro definitions.

It acts as a library of macro sequences.
Programs may contain both macro include
files and library files.

102

1/7/2022

How to practice and test programs ?

CPU Development Kits

How to practice and test programs ?

CPU Simulators/Emulators
_ EMUS8086

1%

3 =3 =230 ¢
8 30 380

103

1/7/2022

- \ B -
"ol ol s "l \ I‘ N\ Yy aa VY e p \

—) AL R) (el olaial
Gl 9 7m)S o ((Ada ol G
Lo adlala) el e).c\

.v 1. . ',1

aial 2y)2 maus o
S S 7 - J

Al Adlala soladial g 18 Adlalu

Crl slgaga) g &S pd glada Lada
S dalfdas lada)) S8) ddlala
Oladal g uyd 3 9a yd 4l g A R
A) gd S3 ala Adlabu)

104

1/7/2022

105

