
1/7/2022

1

Nader Samsunchi

1

N. Samsunchi
2

1/7/2022

2

N. Samsunchi
3

A “short list” of embedded systems

And the list goes on and on

Anti-lock brakes
Auto-focus cameras

Automatic teller machines

Automatic toll systems

Avionic systems

Battery chargers

Camcorders

Cell phones

Cell-phone base stations

Cordless phones

Cruise control

Digital cameras

Disk drives

Electronic card readers

Electronic instruments

Electronic toys/games

Factory control

Fax machines

Fingerprint identifiers

Home security systems

Life-support systems

Medical testing systems

Modems

MPEG decoders

Network cards

Network switches/routers

On-board navigation

Pagers

Photocopiers

Point-of-sale systems

Portable video games

Printers

Satellite phones

Scanners

Smart ovens/dishwashers

Speech recognizers

Stereo systems

Teleconferencing systems

Televisions

Temperature controllers

Theft tracking systems

TV set-top boxes

VCR’s, DVD players

Video game consoles

Video phones

Washers and dryers

N. Samsunchi
4

Memory

Input Output
Process

and Control

(CPU)

1/7/2022

3

N. Samsunchi
5

N. Samsunchi
6

Memory

Input Output
Process

and Control

(CPU)

1/7/2022

4

N. Samsunchi
7

• 1941 : Zuse Z3

N. Samsunchi
8

• 1946 : ENIAC , 30,000Kg ,

$7,000,000,f=100KHz

1/7/2022

5

N. Samsunchi
9

• 1949 : EDVAC

• Main Players :

IBM , DEC,

Honeywell

N. Samsunchi
10

•Big ,

•Expensive ,

•Independent,

•Dedicated Hardware and
Software,

•Single purpose ,

•Incompatible.

1/7/2022

6

N. Samsunchi
11

Memory

Input Output
Process

and Control

(CPU)

N. Samsunchi
12

• 1971 : Intel 4004
 For Busicom calculator

• 2300 transistors

• 400 – 800 kHz

• 4-bit word size

• 16-pin DIP package

• Masks Drawn with color pencils !

1/7/2022

7

N. Samsunchi
13

• 1971 : Intel 4004
 For Busicom calculator

• 2300 transistors

• 400 – 800 kHz

• 4-bit word size

• 16-pin DIP package

• Masks Drawn with color pencils !

N. Samsunchi
14

• 1972 : Intel 8008

• For Terminals

• 3500 transistors

• 500 – 800 kHz

• 8-bit word size

• 18-pin DIP package

1/7/2022

8

N. Samsunchi
15

• 1972 : Intel 8008

• For Terminals

• 3500 transistors

• 500 – 800 kHz

• 8-bit word size

• 18-pin DIP package

N. Samsunchi
16

• 1974 : Intel 8080
• Used in Altair computer

 (early hobbyist PC)

• 4500 transistors

• 2 MHz

• 8-bit word size

• 16-bit address bus

• 40-pin DIP package

• ➔ Intel 8085

1/7/2022

9

N. Samsunchi
17

• 1974 : Intel 8080
• Used in Altair computer

 (early hobbyist PC)

• 4500 transistors

• 2 MHz

• 8-bit word size

• 16-bit address bus

• 40-pin DIP package

• ➔ Intel 8085

N. Samsunchi
18

•1974 : Motorola 6800

•1976 : Zilog Z80

1/7/2022

10

N. Samsunchi
19

• 1980 : Intel 8086

•➔ Intel 8088

• Revolutionary products

• 29,000 transistors

• 5-10 MHz

• 16-bit word size

• 40-pin DIP package

• Introduced x86 Architecture

N. Samsunchi
20

• 1981 : IBM PC

• 1983➔PC/XT

• Intel

8086/88➔80186➔80286➔80386➔80486

1/7/2022

11

N. Samsunchi
21

• 1982 : 80286

• IBM PC AT

• 134k transistors

• 6-12 MHz

• 16-bit word size

• 68-pin

N. Samsunchi
22

• 1982 : 80286

• IBM PC AT

• 134k transistors

• 6-12 MHz

• 16-bit word size

• 68-pin

1/7/2022

12

N. Samsunchi
23

•1985 : 80386
• Modern x86 Architecture

• 275k transistors

• 16-33 MHz

• 32-bit word size

• 100-pin

N. Samsunchi
24

•1989 : 80486
• Floating point unit

• 1.2M transistors

• 25-100 MHz

• 32-bit word size

• 168-pin

1/7/2022

13

N. Samsunchi
25

•1993 : Pentium
• 3.2M transistors

• 60-300 MHz

• 32-bit word size

• 296-pin

N. Samsunchi
26

•1995~1999 : Pentium Pro / II

/ III
• Multimedia instructions

• 5.5M-28M transistors

• 166-1000 MHz

• 32-bit word size

• Xeon (for Servers)

1/7/2022

14

N. Samsunchi
27

•2001 : Pentium 4
• 42-125M transistors

• 1.4-3.4 GHz

• 32-bit word size

• 478-pin

• 2004:First 64-bit

Instructions

N. Samsunchi
28

• Intel Pentium D

• Intel Pentium Dual-Core

• Intel Core

• Intel Core2

• Intel Core i3

• Intel Core i5

• Intel Core i7

• Intel Core i9

• Intel Itanium

• AMD

1/7/2022

15

N. Samsunchi
29

N. Samsunchi
30

1/7/2022

16

N. Samsunchi
31

•Cheaper

•Smaller

•General Purpose

•Hardware / Software

Compatibility

N. Samsunchi
32

General

Purpose

Micro

processor

RAM ROM Timer

Serial

COM

Port

IO

Port

Data BUS

Address BUS

Control BUS

1/7/2022

17

N. Samsunchi
33

General

Purpose

Micro

processor

RAM ROM Timer

Serial

COM

Port

IO

Port

Data BUS

Address BUS

Control BUS

N. Samsunchi
34

Memory

Input Output
Process

and Control

(CPU)

1/7/2022

18

 Integrated chip that typically contains
integrated CPU, memory (RAM -ROM), I/O ports
on a single Chip.

 Not a general-purpose computer .Designed to
execute a specific task to control a single
system (Embedded System)

 System on a Chip (SoC)

 Lab. On a chip (LoC)

 Smaller & Specified (cost reduction)

N. Samsunchi
35

N. Samsunchi
36

1/7/2022

19

Microprocessor :
•General purpose chip, Used to design multi
purpose computers or devices

•Require Multiple chips to handle various
tasks

Microcontroller :
• Not General purpose. Task Specific

• Self Contained

N. Samsunchi
37

1974 : TMS1000

4 bit

N. Samsunchi
38

1/7/2022

20

AVR (Atmel)
PIC(Microchip Technology)
HCS12 (Freescale)
8051(Intel)
ARM (Acorn)
Z8(Zilog)
BASIC Stamp(Parallax)
ESP

N. Samsunchi
39

N. Samsunchi
40

1/7/2022

21

ESP (Espressif Systems)

ESP8266
16 I/O Pins

1MB Memory

WiFi Network

N. Samsunchi
41

ESP (Espressif Systems)

ESP32

•16 I/O Pins

•1MB Memory

•WiFi Network

•Bluetooth: v4.2,BLE5

N. Samsunchi
42

1/7/2022

22

N. Samsunchi
43

Memory

Input

Output

Process

and Control

(CPU)

N. Samsunchi
44

Infrastructure as a service

(IaaS)

Platform as a service (PaaS)

Software as a service (SaaS)

Mobile "backend" as a

service (MBaaS)

1/7/2022

23

N. Samsunchi
45

Server Computers
• Network based.

• High Capacity, Performance, Reliability

Personal Computers
• General Purpose.

• Medium Capacity, Performance, Reliability

Embedded Computers
• Single Purpose.

• Low Capacity, Performance

• I/O oriented.

N. Samsunchi
46

High Level Language
• Closer to problem domain.

• Productivity, portability

Assembly Programming Language

• Textual representation of instructions.

• Speed

• Processor oriented

Hardware Representation

• Binary Digits(Bits)

1/7/2022

24

N. Samsunchi
47

 Instructions.
Registers.
Memory Architecture.
Addressing Modes.

Benefits:
 Abstraction
• Multiple Implementations :
• Physical (INTEL - AMD)

• Virtual

N. Samsunchi
48

 Instructions.
Registers.
Memory Architecture.
Addressing Modes.

Benefits:
 Abstraction
• Multiple Implementations :
• Physical (INTEL - AMD)

• Virtual

1/7/2022

25

N. Samsunchi
49

Availability
• Market

• Support (Data Sheets, Development Tools,

Experts,…)

• Price

Power

Performance

N. Samsunchi
50

1/7/2022

26

N. Samsunchi
51

• f : Clock Frequency (Hz : Cycles per
second)

• T : Clock period (S: Duration of a clock
cycle)

T=1/f

• Example : f = 2 GHz = 2 x 10^9 Hz
➔ T= 1/f = 1/2GHz=0.5 nS=500 pS

N. Samsunchi
52

1/7/2022

27

N. Samsunchi
53

Algorithm
• Determines No. of Operations executed.

Programming Language, Compiler ,
Architecture
• Determines No. of Machine Instructions executed

per operation.

Processor and Memory System
• Determines how fast instructions are executed.

 I/O System
• Determines how fast I/O operations are Executed.

N. Samsunchi
54

• Definition: Performance=1/Execution Time

• Example : Time Taken to run a program :

 Computer A : 10 S

 Computer B : 15 S

 Relative Performance = (1/10) / (1/15) = 15/10=1.5

 ➔Computer A is 1.5 times faster than Computer B.

• Benchmark Programs (Antutu , Landmark, ..)

1/7/2022

28

N. Samsunchi
55

• Definition :

 CPU Time=No. of CPU Clock Cycles X Clock Cycle Time

CPU Time=N.T=N/f

• To improve Performance (reduce CPU Time) :

 Decrease N

 Increase f

➔ Tradeoff 

N. Samsunchi
56

•Computer A : f1=2GHz ,

CPU Time1 = 10 S

•Computer B : N2=1.2N1

CPU Time2=6 S

f2=?

1/7/2022

29

N. Samsunchi
57

CPU Time1=N1/f1=10S ➔

N1=(10)(2GHz)

CPU Time2=N2/f2=6S ➔

f2=N2/6=1.2N1/6

f2=(1.2)(10)(2GHz)/6=4GHz

N. Samsunchi
58

• No. of Clock Cycles=Instructions Count x

Cycles Per Instruction

• CPU Time=N.T=N/f

• CPU Time=(ICN)(CPI) / f

• ICN: Instruction Count

• CPI: Cycle Per Instruction

1/7/2022

30

N. Samsunchi
59

• Example :

Computer A: f1=4GHz , CPI1= 2

Computer B: f2=2GHz. CPI2= 1.2 ,

same ISA

Which is faster ? By how much ?

N. Samsunchi
60

• Answer :

Performance1/Performance2
=CPU Time2/CPU Time1
Performance1/Performance2
=(CPI2/CPI1)(f1/f2)
Performance1/Performance2
=(1.2/2)(4/2)=1.2
➔ A is faster , by 1.2 times.

1/7/2022

31

N. Samsunchi
61

• CPI=Total No. of Clock Cycles / No. of Instructions

• Example :

CPI1=(2+2+6)/(2+1+2)=2

CPI2=(4+2+3)/(4+1+1)=1.5

Type A B C

No. of required Clock Cycles 1 2 3

No. of Instructions-Software 1 2 1 2

No. of Instructions-Software 2 4 1 1

N. Samsunchi
62

• CPU Time=(ICN).(CPI).(1/f)

• Performance depends on :

 Algorithm :

 affects ICN ,possibly CPI

 Software (Programming Language , Compiler) :

 affects ICN, CPI

 ISA Hardware :

 affects ICN, CPI, f

1/7/2022

32

N. Samsunchi
63

Need for Mobility
Extra Heat Problem
World Climate Problems.

 In Current technology (CMOS), Power
depends on :
• f

• Voltage ^2

• Low Voltage design (5V ➔ 1V)

N. Samsunchi
64

We can NOT reduce Voltage further
• Why?

We can NOT reduce f
• Why?

We can NOT accept more heat

• Why?

What else to do?
• Change the architecture

1/7/2022

33

N. Samsunchi
65

Example : AMD OPTERON X4 CPU SPEC

Power Benchmark
• At %100 Load : 295 W (Full Power)

• At %50 Load : 246W (%83 Full Power)

• At %10 Load : 180W (%61 Full Power)

• At %0 Load :141W (%48 Full Power)

 Google Data Centers : (0.3 Wh per search)
 Mostly operate at %10- %50 load

 At %100 load less than %1 of the time.

 ➔ Do NOT Overestimate Processing Power needs!

 Increase the clock frequency
• More frequency ➔More power consumption &

more heat

• Limitations (More Complexity, More Price)

Change the architecture

• Parallel Processing

• Pipelining

• RISC vs CISC

N. Samsunchi
66

1/7/2022

34

N. Samsunchi
67

Multicomputing

Multiprocessing
• Board level

• Chip level: Multicore

microprocessors

N. Samsunchi
68

• More than one processor per chip.

1/7/2022

35

N. Samsunchi
69

New Problems :
 Parallel Programming

 Load Balancing

 Communication and

Synchronization

Change the architecture
•Parallel Processing

•Pipelining

•RISC vs CISC

N. Samsunchi
70

1/7/2022

36

N. Samsunchi
71

Instruction

1
1 1

2
2 2

Fetch

Decode

Execute

Clock 1 2 3 4 5 6

N. Samsunchi
72

Instruction

1
1 , 2

1,2,3 2,3,4

Fetch

Decode

Execute

Clock 1 2 3 4

1/7/2022

37

CISC (Complex Instruction Set Computer)
• Put as many instruction as you can into the CPU

RISC (Reduced Instruction Set Computer)
• Reduce the number of instructions, and use your

facilities in a more proper way.

N. Samsunchi
73

1980 : The “20/80” Rule ,By Patterson.

Berkeley University → SPARC architecture.

Stanford University →MIPS architecture.

N. Samsunchi
74

1/7/2022

38

IBM Corp. → PowerPC architecture.

Atmel Corp. →AVR architecture.

N. Samsunchi
75

Acorn Corp. → ARM architecture.

N. Samsunchi
76

1/7/2022

39

N. Samsunchi
77

N. Samsunchi
78

1/7/2022

40

N. Samsunchi
79

N. Samsunchi
80

1/7/2022

41

N. Samsunchi
81

N. Samsunchi
82

1/7/2022

42

N. Samsunchi
83

Im
Im

affected

proved unaffected

T
T T

provementFactor
= +

N. Samsunchi
84

Total Time=100s

• Multiplication Time=75S

• We want 2 times better Performance.

How much improve Multiplication?

1/7/2022

43

N. Samsunchi
85

 P2=2P1 → T2=T1/2=100S/2=50S

 50=(75/IF)+(100-75) → IF=3

 We want 4 times performance.

Recalculate IF.
 ➔ It can NOT done!

N. Samsunchi
86

MIPS : Million Instructions Per Second.

Example :
• CPU 1 : 100 MIPS.

• CPU 2: 120 MIPS.

• Which is Better ?

• It is a method of measuring the raw speed of a

computer's processor

1/7/2022

44

N. Samsunchi
87

• SPEC (Standard Performance Evaluation Corp)

• How to do benchmark:
1. Execute n Standard Programs and measure execution times.

2. Normalize relative to Reference machine.

3. Calculate geometric mean :

𝑛

ෑ

1

𝑛

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠

• Assignment 1:
• Why geometric mean and NOT arithmetic mean?

Breadboards
• Design, Test and

Prototyping

N. Samsunchi
88

Dedicated Board.

• Production

1/7/2022

45

Single Board Computers (SBC)

N. Samsunchi
89

Raspberry Pi Single Board Computer (SBC)

N. Samsunchi
90

1/7/2022

46

RaspberryPi Single Board Computer (SBC)

N. Samsunchi
91

RaspberryPi Single Board Computer (SBC)

N. Samsunchi
92

1/7/2022

47

RaspberryPi Zero W

N. Samsunchi
93

Full Computer :

PC (Desktop, Laptop)

 Industrial PC (IPC)

N. Samsunchi
94

1/7/2022

48

Military PC (MPC)

N. Samsunchi
95

N. Samsunchi
96

A. Newest and the most Powerful Intel

and AMD X86 desktop grade CPUs and

their specifications(f , No. of Cores)?

B. Newest and the most Powerful Arduino

and Raspberry Pi SBCs and their

specifications(uP or uC, f, Memory)?

C. Introduce “Halocode” SBC.

1/7/2022

49

N. Samsunchi
97

WEMOS D1 Single Board Computer (SBC)

N. Samsunchi
98

1/7/2022

50

N. Samsunchi
99

N. Samsunchi

100

1/7/2022

51

N. Samsunchi

101

N. Samsunchi
102

1/7/2022

52

N. Samsunchi

103

Main Idea

N. Samsunchi

104

Specifications:

1.Contactless Temperature Measurement



1/7/2022

53

N. Samsunchi

105

Specifications:

1. Contactless Temperature Measurement

Distance:5 m

Accuracy: 0.3 oC

N. Samsunchi

106

Specifications:

2. License Plate Recognition

Distance:5 m

Accuracy: 99%

1/7/2022

54

N. Samsunchi

107

Specifications:

Max weight: 1 Kg

Power: Battery.

Working Time:5h

Standby Time: 24h

Price <1000$

….

N. Samsunchi 10

8

A. Block diagram Design : Blocks

and their interconnections.

B. Design implementation : Which ?

Why?

1/7/2022

55

N. Samsunchi 10

9

دوربین حرارتی
(نور مادون قرمز)

؟

دوربین
(نور مرئی)

؟

واحد پردازش و کنترل
؟

واحد ؟؟؟ واحد ؟؟؟

1/7/2022

1

Nader Samsunchi

1

2

1/7/2022

2

3

4

1/7/2022

3

8086 Microprocessor Internal block diagram

5

6

1/7/2022

4

Bit (Binary Digit – 0 , 1)

Nibble (4 Bits)

Byte (8 Bits , 2 Nibbles)

Word (16 Bits, 2 Bytes)

Double Word (2 Words,32 Bits,4 Bytes)

Quad Word(4 Words,64 Bits,8 Bytes)

Kilo Byte (2^10 Bytes : 1024 Bytes)

Mega Byte (2^20 Bytes :1,048,576 Bytes)

Giga Byte (2^30 Bytes :1,073,741,824 Bytes)

7

A word (16-bits) is formed with two bytes of

data.

Method 1: The least significant byte always

stored in the lowest-numbered memory

location.Most significant byte is stored in the

highest.

This method of storing a number is called the

little endian format.

8

1/7/2022

5

Method 2: Alternate method is called the big

endian format.

Numbers are stored with the lowest location

containing the most significant data.

9

10

1/7/2022

6

Intel x86 processors use little-

endian. also Zilog Z80 (including

Z180 and eZ80)
Motorola 68000 series , Xilinx, IBM

z/Architecture, Atmel AVR32 are Big-

endian. Also the Internet protocol suite,

such as IPv4, IPv6, TCP, and UDP

11

Method 3: ARM versions 3 and

above, PowerPC, Alpha, SPARC V9,

MIPS, and Intel IA-64 : Bi-endian

Hardware/Software switchable

endianness in data fetches and

stores, instruction fetches, or both.

12

1/7/2022

7

8086/8088 mode of operation is known as

Real Mode Operation.
• 8086: 20 address lines => 1MB addressable Memory

80286 and above operate in either the real or

protected mode.

13

Real mode operation allows addressing of
only the first 1M Byte of memory space—
even in Pentium 4 or Core2 microprocessor.
• the first 1M byte of memory is called the real

memory, conventional memory, or DOS memory

 Real Mode operation is for binary
compatibility.

 Compatibility:
• Source code

• Binary

14

1/7/2022

8

 Registers are in
the CPU and are
referred to by
specific names

 14 Registers (all
16 Bits)

 General Purpose
(Data) Registers

 Address
Registers

 Status and
Control Registers

15

General Purpose (Data) registers

• Hold data for an operation to be performed

• Instructions execute faster if the data is in a

register

• AX, BX, CX, DX are the data registers

• Low and High bytes of the data registers can be

accessed separately

• AH, BH, CH, DH are the high bytes (8 bits)

• AL, BL, CL, and DL are the low bytes (8 bits)

• Data Registers are general purpose registers but

they also perform special functions

16

1/7/2022

9

General Purpose (Data) registers

• AX

• Accumulator Register

• Preferred register to use in arithmetic,

logic and data transfer instructions

• Must also be used in I/O operations

• BX

• Base Register

• Also serves as an address register

17

General Purpose (Data) registers

• CX

• Count register

• Used as a loop counter

• Used in shift and rotate operations

• DX

• Data register

• Used in multiplication and division

• Also used in I/O operations

18

1/7/2022

10

Address Registers

• Hold the address of an instruction or

data element

• Segment registers (CS, DS,

ES, SS)

• Pointer registers (SP, BP)

• Index registers (SI, DI)

19

Status and Control Registers

• IP

• Instruction Pointer

• Flags Register

• Keeps the current status of the

processor

• Control CPU operation.

20

1/7/2022

11

Flags Register

Carry flag

Parity flag

Auxiliary flag

Zero

Overflow

Direction

Interrupt enable

Trap

Sign
6 are status flags

3 are control flag

21

22

1/7/2022

12

Segment Registers :CS, DS, SS,ES

• Are Address registers, Store the memory

addresses of instructions and data

• Memory Organization

• Each byte in memory has a 20 bit address

starting with 0 to (2^20)-1 or 1 meg of

addressable memory

• Addresses are expressed as 5 hex digits from

00000 - FFFFF

• Problem: But 20 bit addresses are TOO BIG to fit

in 16 bit registers!

• Solution: Segmented Memory
23

Segmented memory addressing:
Physical (absolute , linear)
address is a combination of a
16-bit segment value and a 16-
bit offset value.

24

1/7/2022

13

 Logical Address → Segment:Offset

Segment numbers range

from 0000 to FFFF

Within a segment, a

particular memory location

is specified with an offset

An offset also ranges from

0000 to FFFF
25

26

1/7/2022

14

Segment Registers

• A Segment Register contains the

Starting location of a segment.

•CS : Code Segment

•DS : Data Segment

•ES : Extra Segment

•SS : Stack Segment
27

Memory Address Generation

• The CPU has a dedicated adder for determining

physical memory addresses

Physical Address (20 Bits)

Adder

Segment Register (16 bits) 0 0 0 0

Offset Value (16 bits)

28

1/7/2022

15

Address Calculation : Example 1

• If DS = 1000h and Offset =29h,

• Where is the actual data?

Offset: 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

2 9

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Segment:

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1Address:

29

Address Calculation : Example 2

• The physical address of the logical

address A4FB:4872 is

A4FB0 h

+ 4872 h =

A9822 h

30

1/7/2022

16

Address Calculation : Example 3

• If DS=7FA2 , Offset=438E

• a) Calculate Physical Address.

• b) Calculate the lower range of the

data segment.

• c) Calculate the upper range of the

data segment.

• d) Show the logical address.

31

32

1/7/2022

17

What segment addresses correspond to the

linear address 28F30h?

Many different segment-offset addresses .For

example:

28F0:0030, 28F3:0000, 28B0:0430, . . .

33

The Code Segment (CS)

• Instructions are always
fetched with using the CS
register.

• The offset is given by the IP
for the Code Segment.

• CS:IP

34

1/7/2022

18

Example 1:

CS:IP=0400:0056

Memory

Segment Register

Offset

Physical or
Absolute Address

0

+

CS:

IP

0400H

0056H

4000H

4056H

0400

0056

04056H

00000H

FFFFFH

35

The Data Segment (DS)

• Data is usually fetched with
respect to the DS register.

DS:data address

36

1/7/2022

19

The Extra Segment (ES)

• ES is like DS. It is usually
used for string operations.

ES:data address

37

The Stack Segment (SS)

• The stack is always
referenced with respect to the
SS register.

• The offset is given by the SP
register.

• SS:SP
• The stack usually used for

storage of temporary data.

38

1/7/2022

20

Stack

• LIFO : Last In – First Out

39

Stack

40

1/7/2022

21

Stack in X86 Architecture

• The stack grows toward
decreasing memory
locations(Lower Addresses).

• The SP points to the last or top
item on the stack.

• PUSH : Decrement the SP
• POP : Increment the SP

41

Example : SS:SP

Memory

Segment Register

Offset

Physical Address

+

SS:

SP

0A00

0100

0A000H

0A100H

0A00 0

0100

0A100H

SS:SP

00000H

FFFFFH

42

1/7/2022

22

43

Pointer Registers

• Contain the offset addresses of memory

locations

• SP (Stack pointer)

• Used with SS to access the stack.

• SS:SP

• BP (Base Pointer)

• Primarily used to access data on the stack.

44

1/7/2022

23

Index Registers

• SI (Source Index register)

– is required for some string operations

– SI is associated with the DS. DS:SI

• DI (Destination Index register)

– is also required for some string operations.

– DI is associated with the ES. ES:DI

• The SI and the DI registers may also be used to

access data stored in arrays

45

46

1/7/2022

24

47

6 are status flags. (important : C ,Z, S , O)

3 are control flag. (important : I)

48

Carry flag will be set

whenever there is a carry.
Example : AL=77h.

AL + 50h = C7h. → C=0

AL + 50h = 17h. → C=1

1/7/2022

25

49

The zero flag will be set (Z=1)

whenever the result is zero.

Example :

AL=10h.

AL + F0h = 00h , → Z=1


50

Sign flag will be set whenever the

result is negative. S shows MSB.

Example :

AL= -20=ECh=1110 1100b

+5=05h=0000 0101b

AL + 05h = -15=F1h=1111 0001b →

S=1

1/7/2022

26

51

Example 2:

AL=+119=77h=0111 0111b

+80=50h=0101 0000b

AL + 50h = C7h=1100 0111b → S=1

C7h=199 >127
How to detect this error?

52

Overflow flag will be set whenever the

result of signed operations is overflow.

Example :

AL range=(-128,+127)=(80h,7F)

AL= 119=77h.

AL + 50h = C7h=199 > (+127) → O = 1

1/7/2022

27

53

I= 0 → Disable hardware Interrupt.

I=1 → Enable hardware Interrupt.

54

 A: Auxiliary flag contains carry out of bit 3 into

bit 4 (Lower nibble to higher nibble) for

specialized arithmetic.

 P:Parity flag will be set whenever the number
of bit “1” are even.

 D: Direction flag is used to specify direction

(increment/decrement index register) in string

operation.

 T: Trap flag is used to interrupt CPU after each

operation.

1/7/2022

28

55

1. Implied

2. Immediate

3. Register

4. Direct

5. Register Indirect

6. Direct Indexed

7. Base Indexed

8. Base Relative

56

1/7/2022

29

No need to address or address is

implied in instruction.

Examples : (No need to Address)

HLT HALT the CPU

NOP No Operation!

Examples : (Address Implied)

57

58

Carry flag
• STC C=1

• CLC C=0

• CMC C → C’ (Complement Carry)

Direction flag
• STD D=1

• CLD D=0

 Interrupt flag
• STI I=1

• CLI I=0

1/7/2022

30

59

Load AH with Flags. AH Flags
• LAHF

Store AH to Flags. FlagsAH
• SAHF

Push Flags to Stack.
• PUSHF

Pop Flags from Stack.
• POPF

An 8 Bit or 16 Bit constant is in

instruction.

Examples :

MOV AL,-30 AL - 30

MOV CX,500 CX 500

60

1/7/2022

31

Both the operands are registers

Example :

MOV BL,AL BL AL

MOV DS,AX DSAX

61

MOV destination , source
Copies source to destination.

 destination=source , source

unchanged

62

1/7/2022

32

The memory address is directly

given in the instruction

Example :

MOV AX,[0200h]

AX  value stored in memory

location DS:0200

63

The memory address is in a register.
Example :
MOV AX,[BX]
AX  value stored at memory address

contained in DS:BX

Only BX,BP,SI,DI can be used !
 If register is SI, DI and BX then DS is by

default segment register.
 If BP is used, then SS is by default segment

register.
64

1/7/2022

33

Uses an index register(DI or SI)
Useful for accessing elements in a

table(array).

Example : we have a TABLE1 array.
MOV DI,2
MOV AL,TABLE1[DI]
AL  The 3rd element of TABLE1

Table elements start with 0.


65

Use DB directive (Define Byte).
Directives are commands to the

assembler ,rather than to the CPU.

Example1 : define TABLE1=(1,2,3,4).
TABLE1 DB 1,2,3,4

Example2 : define TABLE1=(1,1,1,1).
TABLE1 DB 4 DUP(1)


66

1/7/2022

34

The operand address is calculated as base
register(BX) plus an index register (DI or SI).

Useful for accessing elements in a 2
dimensional table(array).

Example :
MOV BX,2
MOV DI,1
MOV AL,[BX][DI] (or MOV AL,[BX+DI])
AL  value stored in memory location

DS:2+1

67

The operand address is calculated

using one of the base registers (BX

or BP)and an 8 bit or a 16 bit

displacement.

Example :

MOV CL,[BX+04H]

CL ← DS: [BX + 04H]

68

1/7/2022

35

MOV [7000H],CL

69

Data Transfer
Arithmetic
Logical
Control and Branch
String

70

1/7/2022

36

IN Input byte or word from port

LAHF Load AH from flags

MOV Move to/from register/memory

OUT Output byte or word to port

POP Pop word off stack

POPF Pop flags off stack

PUSH Push word onto stack

PUSHF Push flags onto stack

SAHF Store AH into flags

XCHG Exchange byte or word

71

72

MOV Dest, Src
•MOV reg, reg reg  reg

•MOV reg, mem reg  mem

•MOV mem, reg mem  reg

•MOV reg, imm reg  imm

•MOV mem, imm mem  imm

1/7/2022

37

73

Both operand must be in the same size.

There is no instruction to put immediate

value directly to a segment register. Have

to use accumulator (AX) to accomplish

this.

There is no move mem mem

instruction. Have to use general registers

to do this.

74

MOV AX,1234h
MOV DX,5678h
MOV AL,DL
MOV BH,DH
MOV DX,BX
MOV [100h],AX
MOV BX,[100h]

MOV AX,2300h
MOV DS,AX

1/7/2022

38

75

76

 Given only offset where to put value, it will be
automatically select DS as the segment register.

1/7/2022

39

77

78

AX = ?

1/7/2022

40

79

AX = 0100h

80

MOV [100h] , 10h

Address 100h = 10h

What about address 101h?

Word or Byte? To put immediate value

directly to memory, we have to specify its
size. (Byte/Word PTR)

•MOV BYTE PTR [100h], 10h

•MOV WORD PTR [100h], 10h

1/7/2022

41

 XCHG target, source

• reg, reg

• reg, mem

• mem, reg

• Examples:

• XCHG AH,BL

• XCHG CX,DX

 This provides an
efficient means to
swap the operands
• No temporary storage

is needed

• Sorting often requires
this type of operation

• This works only with
the general registers

• XCHG cannot perform
memory to memory
moves

81

82

PUSH source(16 bit)

Example: PUSH AX

POP destination(16 bit)

Example: POP DX

1/7/2022

42

83

I/O devices(such as
Keyboard,
speaker,modem,…) allow
the CPU to communicate
with the outside world.

The 8086 communicates
with I/O devices through
special circuits callled
ports.

84

Each port identifies by a

number.I/O port number is

similar to a memory

address

There are 65,536(64K) I/O

ports available.

Circuit design identifies

Port numbers.

1/7/2022

43

85

The area below I/O location 0400H is
considered reserved for system devices.
• Examples:
• 60H Keyboard.
• 61H Buzzer.
• 1F0H Master HDD Controller.
• 201H Joystick.
• 3F0H Floppy Disk Controller.

Area available for expansion by plug-in
cards (such as Modems,Network Cards)
extends from I/O port 0400H through
FFFFH.

86

IN AX,PortNumber (16 Bit)
IN AL,PortNumber (8 Bit)

PortNumber is between 0 and 255,
refers to device address.

For addressing 64K Ports,Use:

MOV DX, PortNumber
IN AX, DX
IN AL, DX

1/7/2022

44

87

OUT PortNumber,AX (16 Bit)
OUT PortNumber,AL (8 Bit)

PortNumber is between 0 and 255,
refers to device address.

For addressing 64K Ports,Use:

MOV DX, PortNumber
OUT DX,AX
OUT DX,AL

IN Input byte or word from port

LAHF Load AH from flags

MOV Move to/from register/memory

OUT Output byte or word to port

POP Pop word off stack

POPF Pop flags off stack

PUSH Push word onto stack

PUSHF Push flags onto stack

SAHF Store AH into flags

XCHG Exchange byte or word

88

1/7/2022

45

INC Increment byte or word by one

DEC Decrement byte or word by one

NEG Compute 2’s complement of byte or word

ADD Add byte or word

ADC Add byte or word plus carry

SUB Subtract byte or word

SBB Subtract byte or word and carry (borrow)

MUL Multiply byte or word (unsigned)

IMUL Multiply byte or word (Signed)

DIV Divide byte or word(unsigned)

IDIV Divide byte or word(Signed)

CBW Convert byte to word

CWD Convert word to double-word

CMP Compare byte or word

89

90

 INC / DEC
• INC register DEC register

• INC memory DEC memory

Examples:
• INC AX AX AX+1

• DEC BL BL BL - 1

• INC [100h] [100h] [100h]+1

1/7/2022

46

Compute 2’s complement.

NEG reg
NEG mem

91

92

MOV CX, 10h ; CX = 0010h

NEG CX ; CX = FFF0h

MOV AX,0FFFFh ; AX = FFFFh

NEG AX ; AX = 1

MOV BL,1 ; BL = 1

NEG BL ; BL = FFh

1/7/2022

47

93

ADD destination,source

 destinationdestination+source

ADD reg, imm

ADD reg, mem

ADD reg, reg

ADD mem, imm
ADD mem, reg

94

ADC destination,source

 destinationdestination+source+carry

ADC reg, imm

ADC reg, mem

ADC reg, reg

ADC mem, imm
ADC mem, reg

1/7/2022

48

95

MOV AL, 10h ;AL = 10h

ADD AL, 20h ;AL = 30h

MOV BX, 200h ;BX = 0200h

MOV AH, 89h ;AX = 8930h

ADD AX, 9876h ;AX = 21A6h,

;Carry=1

ADC BX, 01h ;BX = ?

BX = 0202h

96

SUB destination,source

 destination destination-source

SUB reg, imm

SUB reg, mem

SUB reg, reg

SUB mem, imm
SUB mem, reg

1/7/2022

49

97

SBB destination,source

 destination destination-source-carry

SBB reg, imm

SBB reg, mem

SBB reg, reg

SBB mem, imm
SBB mem, reg

98

MOV AL, 30h ;AL = 30h
SUB AL, 20h ;AL = 10h
MOV BX, 9876h ;BX = 9876h
MOV AX, 8930h ;AX = 8930h
ADD AX,BX ;AX = 21A6h
 ; Carry=1
SBB BX, 0001h ;BX = ?

;BX=9874h
SBB BX, 0001h ;BX = ?
 ;BX=9873h

1/7/2022

50

99

MUL (Multiply unsigned)

• MUL reg

• MUL mem

 IMUL (Multiply signed)

• IMUL reg

• IMUL mem

Always perform with accumulator(AX).

100

AL is multiplicand
AX keep the result
Example :
MOV AL,15 ; AL = 0Fh
MOV CL,-10 ; CL = F6h
 IMUL CL ; AX = FF6Ah= -150D

MOV AL,15 ; AL = 0Fh
MOV CL,-10 ; CL = F6h=246D
MUL CL ; AX = 0E6Ah=3690D

1/7/2022

51

101

AX is multiplicand

DX:AX keep the result

Example :

MOV AX,0100h ; AX = 0100h

MOV BX,1234h ; BX = 1234h

MUL BX ; DX = 0012h
; AX = 3400h

102

DIV (Unsigned division)

• DIV reg

• DIV mem

 IDIV (Signed division)

• IDIV reg

• IDIV mem

Always perform with accumulator.

1/7/2022

52

103

AL is dividend

AL keep the result

AH keep the remainder

Example :

MOV AL, 23 ; AL = 17h = 23D

MOV BL, -16 ; BL = F0h = -16D

 IDIV BL ; AL = FFh = -1D
 ; AH = 07h

104

DX:AX dividend.
AX keep the result, DX keep the remainder.

Example:
MOV AX,86A0h ;AX=86A0h
MOV DX,0001h ; DX=0001h
 ; DX:AX=0001 86A0h=100 000D
MOV CX,0EA60h ; CX=EA60h=60 000D
DIV CX ;AX = 0001h

;DX = 9C40h=40 000D

1/7/2022

53

105

Convert Byte to Word : CBW
• Signed convert AL -> AX

Convert Word to Double word : CWD
• Signed convert AX -> DX:AX

106

MOV AL,22h ; AL=22h

CBW ; AX=0022h

MOV AL,0F0h ; AL=F0h=-16D

CBW ; AX=FFF0h

MOV AX, 3422h ; AX=3422h

CWD ; DX=0000h

 ; AX=3422h

1/7/2022

54

107

CMP destination,source
CMP reg, imm
CMP reg, mem
CMP reg, reg
CMP mem,imm
CMP mem, reg

CMP dose not changes values of source
or destination.

CMP affects flags.

108

MOV CX, 10h ;CX=10h

CMP CX, 20h ;S flag=1

MOV BX, 40h ;BX=40h

CMP BX, 40h ;Z flag=1

MOV AX, 30h ;AX=30h

CMP AX, 20h ;S flag=0

1/7/2022

55

109

Flag affection

NOT Logical NOT of byte or word

AND Logical AND of byte or word

OR Logical OR of byte or word

XOR Logical exclusive-OR of byte or word

SHL Logical shift left byte or word

SHR Logical shift right byte or word

SAL Arithmetic shift left byte or word

SAR Arithmetic shift right byte or word

ROL Rotate left byte or word

ROR Rotate right byte or word

RCL Rotate left trough carry byte or word

RCR Rotate right trough carry byte or word

TEST Test byte or word

110

1/7/2022

56

111

NOT destination

 NOT reg

NOT mem

Flags are unaffected.

Example :

MOV AX,0FFFFh ;AX=FFFFh

NOT AL ;AX=FF00h

NOT AX ;AX=00FFh
NOT WORD PTR [0120h]

112

AND destination,source

 AND reg, imm

AND reg, mem

AND reg, reg

AND mem, imm

AND mem, reg

Flags Affection: CF=0, OF=0,
 ZF,SF,PF changes.

1/7/2022

57

113

Selective Set
Selective Reset
Selective Complement

Example:
MOV AL,11110000B ;AL=11110000B
MOV BL,00001010B ;BL=00001010B
OR AL,BL ;AL=11111010B
MOV BL,00111111B ;BL=00111111B
AND AL,BL ;AL=00111010B
MOV BL,00000011B ;BL=00000011B
XOR AL,BL ;AL=00111001B

114

SHL destination,count

SHR destination,count

Destination : reg, mem

Count : 1, CL

1/7/2022

58

115

MOV AL,10001000B ;AL=10001000B

SHL AL ,1 ;AL=00010000B

 ;CF=1

MOV CL,4

SHR AL,CL ;AL=00000001B

 ;CF=0

116

SAL destination,count

SAR destination,count

Destination : reg, mem

Count : 1, CL

1/7/2022

59

117

MOV AL,2 ;AL=2

SAL AL,1 ;AL=4 , CF=0

MOV AL,-2 ;AL=-2=FEh

SAL AL,1 ;AL=-4=FCh , CF=1

SAL : x 2 (Doubling value)

118

MOV AL,8 ;AL=8
MOV CL,2
SAR AL,CL ;AL=2 , CF=0

MOV AL,-4 ;AL=-4=11111100B
SAR AL,1 ;AL=-2=FEh , CF=0

MOV AL,5 ;AL=5=00000101B
SAR AL,1 ;AL=2=00000010B
 ;CF=1
SAR : / 2 (Halving value)

1/7/2022

60

119

ROL destination,count

ROR destination,count

Destination : reg, mem

Count : 1, CL

120

RCL destination,count

RCR destination,count

Destination : reg, mem

Count : 1, CL

1/7/2022

61

121

MOV AL,10001000B ;AL=10001000B

ROL AL ,1 ;AL=00010001B

 ;CF=1

RCL AL,1 ;AL=00100011B

;CF=0

122

Using SHIFT instructions, Write

a program to double a 32 bit

value stored in DX:AX.

1/7/2022

62

123

TEST acts like AND ,

 but does not change values,

 only sets the flags

Flags Affection: CF=0, OF=0,

 ZF,SF,PF changes.



124

MOV AL, 00000101B ;AL=00000101B

TEST AL, 00000001B ; AL=00000101B

;ZF = 0

TEST AL, 00000010B ;AL=00000101B
 ;ZF = 1

1/7/2022

63

125

Using TEST, write a program to

check that bits 0,3,6,7 of AL

are all ‘1’ (ZF=1) or not

(ZF=0).

JMP Unconditional Jump

Jxx Conditional Jumps

LOOP Loop CX times

LOOPZ Loop if Zero

LOOPE Loop if Equal

LOOPNZ Loop if Not Zero

LOOPNE Loop if Not Equal

126

1/7/2022

64

CALL Call a Procedure

RET Return from a Procedure

CLI Clear Interrupt Flag

STI Set Interrupt Flag

INT Interrupt

IRET Interrupt Return

NOP No Operation

HLT Halt

127

128

 JMP Label

Unconditional Jump to Label

Example :

 JMP Quit




Quit: MOV AL,10h

1/7/2022

65

129

 Jxx Label

Conditional Jump to Label

 Jumps based on Flags

 Jumps based on Unsigned Data

 Jumps based on Signed Data

 Jump based on CX register

130

1/7/2022

66

131

 JE Jump if Equal ZF=1
 JNE Jump in Not Equal ZF=0
 JA Jump if Above (CF=0 and ZF=0)
 JAE Jump if Above or Equal CF=0
 JB Jump if Below CF=1
 JBE Jump if Below or Equal (CF=1 or ZF=1)

 JNBE =JA (Not Below or Equal)
 JNB =JAE (Not Below)
 JNAE =JB (Not Above or Equal)
 JNA =JBE (Not Above)

132

MOV AL,’A’ ;AL=41h

CMP AL,’B’ ;CF=1,ZF=0

JB Label1 ;True

JA Label2 ;False

1/7/2022

67

133

 JE Jump if Equal ZF=1
 JNE Jump in Not Equal ZF=0
 JG Jump if Greater (ZF=0 and SF=OF)
 JGE Jump if Greater or Equal SF=OF
 JL Jump if Less SF<>OF
 JLE Jump if Less or Equal (ZF=1 or SF<>OF)

 JNLE =JG (Not Less or Equal)
 JNL =JGE (Not Less)
 JNGE =JL (Not Greater or Equal)
 JNG =JLE (Not Greater)

134

MOV AL,-5 ;AL=-5=FBh

CMP AL,-7 ;CF=0,ZF=0

 ; OF=0,SF=0

JG Label1 ;True

JLE Label2 ;False

CMP AL,1

JG Label1 ;False

JLE Label2 ;True

1/7/2022

68

135

JCXZ Label

Jump to Label if CX=0

136

LOOP Label
Loops CX times (Until CX<>0).

Example :
MOV CX,3
MOV AL,0 ;AL=0
MOV BL,0 ;BL=0
Lbegin: ADD AL,10
 ADD BL,20
LOOP Lbegin
 ;AL=30 , BL=60

1/7/2022

69

137

138

LOOPZ Label

LOOPE Label

Loops if CX<>0 and ZF=1.

LOOPNZ Label

LOOPNE Label

Loops if CX<>0 and ZF=0.

1/7/2022

70

139

MOV CX,3

MOV AL,0 ;AL=0

MOV BL,0 ;BL=0

Lbegin: ADD AL,10

 ADD BL,20

LOOPZ Lbegin

 ;AL=10 , BL=20


140

CALL ProcedureName

Calls a Procedure.

RET

Returns from a Procedure.

Return Address will be saved in Stack.

1/7/2022

71

141

ProcName PROC NEAR

 -------------------

 -------------------

 -------------------

 RET

ProcName ENDP

 -------------------

 -------------------

 CALL ProcName

142

Add7 PROC NEAR

 ADD AL,7

 RET

Add7 ENDP

..........

..........

MOV AL,0 ;AL=0

CALL Add7 ;AL=7

1/7/2022

72

143

Stop a running program, save the

state, and allows a special

program(an Interrupt Service

Routine [ISR]) to run instead, then

return to main program and restore

the state.

Mainly used for I/O Operations

(generally better than polling).

144

In applications where loss of data

cannot be tolerated (e.g. where safety

would be affected) the designer must

ensure that all of the devices can be

properly serviced under worst case

conditions. In some of these systems it

may be easier to use polling to help

ensure correct worst-case behaviour.

1/7/2022

73

145

Hardware
• Maskable

• Nonmaskable

Software
• BIOS

• DOS

• CPU exceptions (traps)

146

1/7/2022

74

147

Non Maskable Interrupt
Can Not be Disabled.
Highist priority.
For Critical situations,such as:
 System Overheating
 Reactor Overpressure
 NMI always generates Interrupt

No. 2.

148

Maskable Interrupt
Can be Disabled by: CLI

• Clear Interrupt Flag (IF=0)
And Enabled by : STI

• Set Interrup Flag (IF=1)
Priority lower than NMI.
INTA: Interrupt Acknowledge.
After Acknowledgement, External device

sends required interrupt Number over
data bus.

1/7/2022

75

149

Solution : Use Programmable

Interrupt Controller (PIC).

150

In IBM PC:
Keyboard : Interrupt No. 9
Serial Port (used for

mouse,Modem ,...) : Interrupt
No. 12

Parallel Port (used for printer) :
Interrupt No. 15

1/7/2022

76

151

Interrupts that triggered by

software(code).

 Applications:
• Test ISRs

• Use ISRs (System Calls)

• CPU Error handling.

152

• BIOS (Basic Input-Output System)

 ISR is in System ROM (EPROM)

• DOS (Disk Operating System)
 ISR is in System RAM,read from Disk.

• CPU exceptions (traps)

A exceptional condition in the CPU

generates the interrupt.

1/7/2022

77

153

 INT intNumber

 intNumber is between 0 and 255.

 There are 256 ISRs. Their begining

addresses calld ‘Interrupt Vector’s.

154

 The IVT consists of 256 four-byte
pointers, always resides at the first
1KB of memory, ranging from 00000h
to 003FFh.

 Example : Interrupt Number 2(NMI),
ISR Vector ?

 2x4=8=8h
 ISR Vector : Offset = [00009h:00008h]
 Segment= [0000Bh:0000Ah]

1/7/2022

78

155

The 8086 operates beginning

with the instruction in absolute

location FFFF0h of memory ,

NOT from location 00000h !

156

Push to stack:
• flags register

• CS

• IP (Return address)

 Use Interrupt Vector :
• IP is loaded from the contents of the word location

‘intNumber’ × 4

• CS is loaded from the contents of the next
word location.

 IF = 0

1/7/2022

79

157

 IRET

 Interrupt Return

 Must be used in the end of ISR.

 Pops from stack:

• IP

• CS

• flags register

Enable interrupt (IF=1).

158

 INT 10h / AH = 0Eh - Character output.

 AL = character to write.

 this functions displays a character on the
screen, advancing the cursor and scrolling
the screen as necessary.

example:
 MOV AL, ‘N‘
 MOV AH, 0Eh
 INT 10h

1/7/2022

80

159

A exceptional condition in the CPU
generates the interrupt.

 Example 1 : Divide by Zero
 Generates Interrupt No. 0
 ISR Vector : Offset : [00001h:00000h]
 Segment : [00003h:00002h]

 Example 2 : Invalid Opcode
 Generates Interrupt No. 6
 ISR Vector : Offset : [00019h:00018h]
 Segment : [0001Bh:0001Ah]

160

NOP

No Operation

Applications:

As a place holder in machine

code.

To create delay for purpose of

timing.

1/7/2022

81

161

HLT

Enter Halt State

CPU halts, waiting for an interrupt.

MOVSB Move byte string

MOVSW Move word string

CMPSB Compare byte string

CMPSW Compare word string

SCASB Scan byte string

SCASW Scan word string

LODSB Load byte string

LODSW Load word string

STOSB Store byte string

STOSW Store word string

REP Repeat

REPE (REPZ) Repeat while equal (zero)

REPNE (REPNZ) Repeat while not equal (not zero)

LEA Load Effective Address

162

1/7/2022

82

163

A set of Characters (Bytes or Words)

Examples: ‘Nader’ , ‘aB91%’

Registers Implied :
• DS,SI → DS:SI used for Source String

• ES,DI → ES:DI used for Destination String.

• AL,AX

• DF (Direction Flag)

Useful for Text Editing and Database

Applications.

164

Load Effective Address

LEA reg,StringName

Reg=Offset Address of StringName

Examples:

0700:0100h LEA SI,str1

0700:0103h str1 DB ‘Nader’

SI=0103h

1/7/2022

83

165

String instructions reference only ONE

Byte or ONE Word.

For repeated execution of string

instructions

(MOVSB,MOVSW,LODSB,LODSW,STOSB,

STOSW), use REP prefix.

CX : Number of repetations.

166

The Direction Flag determines the

direction of a repeated operation:

DF=0 : Process string from Left to Right

DF=1 : Process string from Right to Left.

To set Direction :

CLD : Clear D (DF=0)

STD : Set D (DF=1)

1/7/2022

84

167

Copy byte at [DS:SI] to [ES:DI]. Update SI
and DI.

[ES:DI] = [DS:SI]

 if DF = 0 then
• SI = SI + 1

• DI = DI + 1

else
• SI = SI - 1

• DI = DI - 1

168

CLD
LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSB
HLT
a1 DB ‘Nader’ ;a1=‘Nader’
a2 DB 5 DUP(0) ;a2=‘00000’

a2=‘Nader’

1/7/2022

85

169

Copy word at [DS:SI] to [ES:DI]. Update SI
and DI.

[ES:DI] = [DS:SI]

 if DF = 0 then
• SI = SI + 2

• DI = DI + 2

else
• SI = SI - 2

• DI = DI - 2

170

CLD
LEA SI, a1
LEA DI, a2
MOV CX, 2
REP MOVSW
HLT
a1 DW 1,2 ;a1=01000200h
a2 DW 2 DUP(0) ;a2=00000000h

a2=01000200h

1/7/2022

86

171

 Compare bytes: [ES:DI] with [DS:SI]. Update SI
and DI.

 Calculates [DS:SI] – [ES:DI]

 set flags according to result:
OF, SF, ZF, AF, PF, CF

 if DF = 0 then
• SI = SI + 1
• DI = DI + 1

 else
• SI = SI - 1
• DI = DI - 1

172

 Compare words: [ES:DI] with [DS:SI]. Update SI
and DI.

 Calculates [DS:SI] – [ES:DI]

 set flags according to result:
OF, SF, ZF, AF, PF, CF

 if DF = 0 then
• SI = SI + 2
• DI = DI + 2

 else
• SI = SI - 2
• DI = DI - 2

1/7/2022

87

173

Repeat following string instructions while

ZF = 1 (result is Zero, Equal), maximum

CX times.

 If ZF=0 or CX=0 the EXIT from repetition

cycle.

Can be used for CMPSB, CMPSW, SCASB,

SCASW instructions.

174

Repeat following string instructions while

ZF = 0 (result is NOT Zero, NOT Equal),

maximum CX times.

 If ZF=1 or CX=0 the EXIT from repetition

cycle.

Can be used for CMPSB, CMPSW, SCASB,

SCASW instructions.

1/7/2022

88

175

name1=‘Nader’
name2=‘Naser’
name1=name2 ?

CLD
LEA SI, name1
LEA DI, name2
MOV CX, 5
REPE CMPSB
HLT
name1 DB ‘Nader’ ;name1=‘Nader’
name2 DB ‘Naser’ ;name2=‘Naser’

176

Compare bytes: AL with [ES:DI]. Update DI.
Calculates AL – [ES:DI]

 set flags according to result:
OF, SF, ZF, AF, PF, CF

 if DF = 0 then
• DI = DI + 1

else
• DI = DI - 1

1/7/2022

89

177

Compare words: AX with [ES:DI]. Update DI.
Calculates AX – [ES:DI]

 set flags according to result:
OF, SF, ZF, AF, PF, CF

 if DF = 0 then
• DI = DI + 2

else
• DI = DI - 2

178

name1=‘Nader’
 find first ‘e’ in name1.

CLD
LEA DI, name1
MOV AL,’e’
MOV CX, 5
REPNE SCASB
HLT
name1 DB ‘Nader’ ;name1=‘Nader’

1/7/2022

90

179

Load byte at [DS:SI] into AL. Update SI.

AL = [DS:SI]

 if DF = 0 then
• SI = SI + 1

else
• SI = SI - 1

180

Load word at [DS:SI] into AX. Update SI.

AX = [DS:SI]

 if DF = 0 then
• SI = SI + 2

else
• SI = SI - 2

1/7/2022

91

181

name1=‘Hello’
Display name1 in screen using INT 10h.

 CLD
 LEA SI, name1
 MOV CX, 5
 MOV AH, 0Eh
m: LODSB
 INT 10h
 LOOP m
HLT
name1 DB 'Hello'

182

برنامه ای بنویسید که یک آرایه حرفی با طول
یعنی طول آرایه از قبل توسط) دلخواه و نامعین

از را با استفاده(مشخص نشده است برنامه نویس
INT 10h بر روی نمایشگر نشان دهد.

توضیح دهید که هر خط برنامه چه کاری انجام می
.دهد

 به صورت دست نویس و با ذکر نام و: پاسخنامه
.نام خانوادگی و شماره دانشجویی

1/7/2022

92

183

Store byte in AL into [ES:DI]. Update DI.

[ES:DI] = AL

 if DF = 0 then
• DI = DI + 1

else
• DI = DI - 1

184

Store word in AX into [ES:DI]. Update DI.

[ES:DI] = AX

 if DF = 0 then
• DI = DI + 2

else
• DI = DI - 2

1/7/2022

93

185

name1=‘AAAAA’
 Define name1 using STOSB.

CLD
LEA DI, name1
MOV AL, ‘A’
MOV CX, 5
REP STOSB
HLT
name1 DB 5 dup(0)

Label: operation operand(s) ;comment

Example:

START: MOV AX,BX ;Copy BX to AX

Space or tab separates fields.
Comments does not generate any machine

code.
Max. length of each line=128 Characters.

186

1/7/2022

94

Can use :

a to z

A to Z

0 to 9

Maximum length = 31 Characters

Must be start with an alphabet.

Can NOT be a reserved word.

Meaningful , short labels are better!

187

ORG number

Defines the beginning point of

program in memory.

COM programs always begin in

100h.

Example :

ORG 100h

MOV AL,30

188

1/7/2022

95

• DB - byte(s)

• DW - word(s)

• DD – double word(s)

• DQ – quad word(s)

 To define a Character or string, use ‘ or “

 Example : S1 DB ‘A’

 S1 : 41h (ASCII code of Character ‘A’)

 A ? represents an uninitialized storage

location. Example :
D2 DB ?

D2 : 00h
189

Any consecutive storage locations of the

same size can be called an array
X DB 'This is an array'

Y DW 40CH,10B,-13,0

Z DD -109236, FFFFFFFFH, -1, 100B

 Components of X are at X, X+1, X+2, X+3,…,X+15

 Components of Y are at Y, Y+2, Y+4,Y+8

 Components of Z are at Z, Z+4, Z+8, Z+12

190

1/7/2022

96

Example :

MOV AL,b ; AL=10h

MOV AL,b+1 ; AL=20h

b DB 10h,20h,30h

 The assembler computes an address based on

the expression.
 NOTE: These are address computations done at assembly

time
MOV AL, b+1

will not Add 1 to the value stored at b

191

Word, double word, and quad word data are

stored in little endian format in memory.

Examples:
Directive Bytes in Storage

s0 DW 35DAh DA 35

S1 DW 256 00 01

S2 DD 1234567H 67 45 23 01

S3 DQ 10 0A 00 00 00 00 00 00 00

192

1/7/2022

97

Allows a sequence of

storage locations to be

defined or reserved

Examples :
 S1 DB 8 DUP (5)

 S2 DB 5 DUP (?)

 S3 DB 3 dup ("AB")

193

Named constants are symbols

created to represent specific values

determined by an expression

Named constants can be numeric or

string

No storage is allocated for these

values

194

1/7/2022

98

name EQU expression
• expression can be string or numeric

• Use ‘ or “ to specify a string

• these symbols cannot be redefined later in the

program

• Examples:

sample EQU 7Fh

aString EQU “1.234”

message EQU ‘This is a message’

195

FACTOR EQU 03H
ADD AL, FACTOR
 ; will code as ADD AL, 03H

The advantage of using EQU in this manner
is, if FACTOR is used many times in a
program and you want to change the value,
all you had to do is change the EQU
statement at beginning, it will changes the
rest of all.

196

1/7/2022

99

A group of instructions that perform one

task, just as a procedure.
• a procedure is accessed via a CALL instruction

• a macro & all instructions defined in the macro,

is inserted in the program at the point of usage

Macros execute faster than procedures

because there is no CALL or RET instruction

to execute.

197

To simplify assembly coding.

To make the program more

readable.

To reduce errors caused by

repetitive coding.

198

1/7/2022

100

Macroname MACRO parameters

 …………………

 Assembly code

 Assembly code

 ………………….

 ENDM

 It’s better to define macros in the beginning

of code.

199

A simple macro to add 2 numbers:

Add2 MACRO nbr1 , nbr2

 MOV AL,nbr1 ; first number

 ADD AL, nbr2 ; second number

 ENDM

Using this Macro :

 Add2 12h,20h

 Add2 40h,50h

200

1/7/2022

101

 MOV AL,12h

 ADD AL,20h

 MOV AL,40h

 ADD AL,50h

201

A local variable is one that appears in the
macro, but is NOT available outside the
macro.

 to define use the LOCAL directive
The LOCAL directive must always be used

on the line immediately following the
MACRO statement.

 The LOCAL statement may have up to 35
labels, all separated with commas.

LOCAL label1,label2, …

202

1/7/2022

102

A simple macro to find minimum of two values :

Min2 MACRO first, second

 LOCAL endcmp

 ; put smaller of two words in the AX register

 MOV AX, first ; first value

 CMP AX, second ; Compare

 JLE endcmp ; exit if so

 MOV AX, second ; otherwise

endcmp: NOP

 ENDM
203

Macro definitions can be placed in the
program file or ,a file can be created that
contains only macros.

To be included with other program files, Use
the INCLUDE directive to indicate a program
file will include a module that contains
external macro definitions.

 It acts as a library of macro sequences.
Programs may contain both macro include

files and library files.

204

1/7/2022

103

CPU Development Kits

205

CPU Simulators/Emulators
EMU8086

206

1/7/2022

104

–چهار گزینه ای)تستی : امتحان

در تاریخ و ساعت(بدون نمره منفی

.اعلام شده در سامانه سما

N. Samsunchi 20

8

.سامانه جام: سامانه برگزاری امتحان

حتما راهنمای شرکت در آزمونهای این •

.سامانه را قبل از امتحان مطالعه کنید

هر خبر و اطلاعیه در مورد درس و امتحان •

. در سامانه جام ذکر خواهد شد

N. Samsunchi 20

9

1/7/2022

105

210
N. Samsunchi

