
Because learning changes everything.®

Chapter 1

Software and Software

Engineering

Introduction

© 2020 McGraw Hill. All rights reserved. Authorized only for instructor use in the classroom.

No reproduction or further distribution permitted without the prior written consent of McGraw Hill.

© McGraw Hill

Nature of Software – Defining Software

Software is:

1) Instructions (computer programs) that when executed provide

desired features, function, and performance;

2) Data structures that enable the programs to adequately

manipulate information.

3) Documentation that describes the operation and use of the

programs.

2

© McGraw Hill

What is Software?

• Software is developed or engineered it is not manufactured in the

classical sense.

• Software doesn't "wear out“ but is does deteriorate.

• Although the industry is moving toward component-based

construction, most software continues to be custom-built.

3

© McGraw Hill

Software Application Domains

• System software.

• Application software.

• Engineering/Scientific software.

• Embedded software.

• Product-line software.

• Web/Mobile applications.

• AI software (robotics, neural nets, game playing).

4

© McGraw Hill

Wear versus Deterioration

Access the text alternative for slide images.

5

© McGraw Hill

Legacy Software

Why must software change?

• Software must be adapted to meet the needs of new computing environments

or technology.

• Software must be enhanced to implement new business requirements.

• Software must be extended to make it interoperable with other more modern

systems or databases.

• Software must be re-architected to make it viable within a network

environment.

6

© McGraw Hill

Defining the Discipline

The IEEE definition:

Software Engineering:

1. The application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the
application of engineering to software.

2. The study of approaches as in (1).

7

© McGraw Hill

Software Engineering Layers

8

© McGraw Hill

Process Framework Activities

Communication.

Planning.

Modeling.

• Analysis of requirements.

• Design.

Construction:

• Code generation.

• Testing.

Deployment.

9

© McGraw Hill

Umbrella Activities

• Software project tracking and control.

• Risk management.

• Software quality assurance.

• Technical reviews.

• Measurement.

• Software configuration management.

• Reusability management.

• Work product preparation and production.

10

© McGraw Hill

Process Difference Requiring Adaptation

• Overall flow of activities, actions, and tasks and the interdependencies among them.

• Degree to which actions and tasks are defined within each framework activity.

• Degree to which work products are identified and required.

• Manner which quality assurance activities are applied.

• Manner in which project tracking and control activities are applied.

• Overall degree of detail and rigor with which the process is described.

• Degree to which the customer and other stakeholders are involved with the project.

• Level of autonomy given to the software team.

• Degree to which team organization and roles are prescribed.

11

© McGraw Hill

Essence of Software Engineering Practice

Polya suggests:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

3. Carry out the plan (code generation).

4. Examine result for accuracy (testing & quality assurance).

12

© McGraw Hill

Understand the Problem

• Who has a stake in the solution to the problem?

That is, who are the stakeholders?

• What are the unknowns?

What data, functions, and features are required to properly solve the

problem?

• Can the problem be compartmentalized?

Is it possible to represent smaller problems that may be easier to

understand?

• Can the problem be represented graphically?

Can an analysis model be created?

13

© McGraw Hill

Plan a Solution

• Have you seen similar problems before?

Are there patterns that are recognizable in a potential solution? Is

there existing software that implements the data, functions, and

features that are required?

• Has a similar problem been solved?

If so, are elements of the solution reusable?

• Can subproblems be defined?

If so, are solutions readily apparent for the subproblems?

• Can you represent a solution in a manner that leads to effective

implementation?

Can a design model be created?

14

© McGraw Hill

Carryout the Plan

• Does the solution conform to the plan?

Is source code traceable to the design model?

• Is each component part of the solution provably correct?

Has the design and code been reviewed, or better, have correctness

proofs been applied to algorithm?

15

© McGraw Hill

Examine the Result

• Is it possible to test each component part of the solution?

Has a reasonable testing strategy been implemented?

• Does the solution produce results, that conform to the data,

functions, and features that are required?

Has the software been validated against all stakeholder

requirements?

16

© McGraw Hill

Hooker’s General Principles

1. The Reason It All Exists – provide value to users.

2. K I S S (Keep It Simple, Stupid!) – design simple as it can be.

3. Maintain the Vision – clear vision is essential.

4. What You Produce, Others Will Consume.

5. Be Open to the Future - do not design yourself into a corner.

6. Plan Ahead for Reuse – reduces cost and increases value.

7. Think! – placing thought before action produce results.

17

© McGraw Hill

How it all Starts – SafeHome Begins

Every software project is precipitated by some business need—

• The need to correct a defect in an existing application;

• The need to the need to adapt a ‘legacy system’ to a changing

business environment;

• The need to extend the functions and features of an existing

application, or

• The need to create a new product, service, or system.

18

Because learning changes everything.®

www.mheducation.com

© 2020 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom.

No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education.

