Education

Chapter 1

Software and Software
Engineering

Introduction

Because learning changes everything.®

NINTH EDITION

Software
Engmeermg

A PRACTITIONERIS APPROACH
1~.---'

=

¥ ROGER S{PRESSMAN
Graw
i BRUGE*R MAXIM

- ,_s

© 2020 McGraw Hill. All rights reserved. Authorized only for instructor use in the classroom.
No reproduction or further distribution permitted without the prior written consent of McGraw Hill.




Nature of Software — Defining Software

Software Is:

1) Instructions (computer programs) that when executed proviae
aesired features, function, and performance;

2) Data structures that enable the programs to adequately
manipulate information.

3) Documentation that describes the operation and use of the
programs.



What i1s Software?

« Software Is developed or engineered it Is not manufactured in the
classical sense.

e Software doesn't "wear out** but is does deteriorate.

» Although the industry 1s moving toward component-based
construction, most software continues to be custom-built.

© McGraw Hill



Software Application Domains

« System software.

 Application software.

 Engineering/Scientific software.

« Embedded software.

 Product-line software.

« \Web/Mobile applications.

Al software (robotics, neural nets, game playing).



Wear versus Deterioration

© McGraw Hill

Failure rate

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or
distribution without the prior written consent of McGraw-Hill Education.

Increased failure rate
due to side effects

Actual curve

Idealized curve

Time

Access the text alternative for slide images.




|_egacy Software

Why must software change?

Software must be agapted'to meet the needs of new computing environments
or technology.

Software must be enhanced'to implement new business requirements.

Software must be extendedto make it interoperable with other more modern
systems or databases.

Software must be re-architectedto make it viable within a network
environment.

© McGraw Hill



Defining the Discipline

The IEEE definition:

Software Engineering.

1. The application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software;, that is, the
application of engineering to software.

2. The study of approaches as in (1).

© McGraw Hill



Software Engineering Layers

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or
distribution without the prior written consent of McGraw-Hill Education.

Tools

Methods

Process

A quality focus

© McGraw Hill



Process Framework Activities

Communication.
Planning.

Modeling.
« Analysis of requirements.
« Design.

Construction:
« Code generation.
 Testing.

Deployment.

© McGraw Hill



Umbrella Activities

 Software project tracking and control.

* Risk management.

« Software guality assurance.

 Technical reviews.

* Measurement.

 Software configuration management.
 Reusability management.

« Work product preparation and production.

© McGraw Hill 10



Process Difference Requiring Adaptation

« Overall flow of activities, actions, and tasks and the interdependencies among them.
» Degree to which actions and tasks are defined within each framework activity.

« Degree to which work products are identified and required.

» Manner which quality assurance activities are applied.

« Manner in which project tracking and control activities are applied.

« Overall degree of detail and rigor with which the process is described.

» Degree to which the customer and other stakeholders are involved with the project.
« Level of autonomy given to the software team.

« Degree to which team organization and roles are prescribed.

© McGraw Hill 11



Essence of Software Engineering Practice

Polya suggests:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

3. Carry out the plan (code generation).

4. Examine result for accuracy (testing & quality assurance).



Understand the Problem

» Who has a stake in the solution to the problem?

That IS, who are the stakeholders?

o What are the unknowns?

What data, functions, and features are required to properly solve the
problem?

« Can the problem be compartmentalized?

Is it possible to represent smaller problems that may be easier to
understand?

« Can the problem be represented graphically?

Can an analysis model be created?

© McGraw Hill

13



Plan a Solution

« Have you seen similar problems before?

Are there patterns that are recognizable in a potential solution? Is
there existing software that implements the data, functions, and
features that are required?

« Has a similar problem been solved?

If so, are elements of the solution reusable?

« Can subproblems be defined?

If so, are solutions readily apparent for the subproblems?

« Can you represent a solution In a manner that leads to effective
Implementation?

Can a design model be created?

© McGraw Hill 14



Carryout the Plan

« Does the solution conform to the plan?

Is source code traceable to the design model?

/s each component part of the solution provably correct?

Has the design and code been reviewed, or better, have correctness
proofs been applied to algorithm?

© McGraw Hill

15



Examine the Result

/s it possible to test each component part of the solution?

Has a reasonable testing strategy been implemented?

» Does the solution produce results, that conform to the data,
functions, and features that are required?

Has the software been validated against all stakeholder
requirements?

© McGraw Hill

16



Hooker’s General Principles

The Reason It All Exists —provide value to users.

Maintain the Vision— clear vision is essential.
What You Proaduce, Others Will Consume.,

Plan Ahead for Reuse — reduces cost and increases value.

N S 00N O DN K

Think! — placing thought before action produce results.

© McGraw Hill

KISS (Keep It Simple, Stupid!)— design simple as it can be.

Be Open to the Future - do not design yourself into a corner.

17



How It all Starts — SafeHome Begins

Every software project is precipitated by some business need—

* The need to correct a defect in an existing application;

* The need to the need to adapt a ‘legacy system’ to a changing
business environment;

* The need to extend the functions and features of an existing
application, or

* The need to create a new product, service, or system.

© McGraw Hill

18



Mc
Graw

alll

Education

Because learning changes everything.®

www.mheducation.com

© 2020 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom.
No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education.



