
Because learning changes everything.®

Chapter 6

Principles that Guide Practice

Part Two - Modeling

© 2020 McGraw Hill. All rights reserved. Authorized only for instructor use in the classroom.

No reproduction or further distribution permitted without the prior written consent of McGraw Hill.

© McGraw-Hill

Principles that Guide Process 1

• Principle #1. Be agile. Regards of your process model, let the

basic tenets of agile development govern your approach.

• Principle #2. Focus on quality at every step. The exit condition

for every process activity, action, and task should focus on the

quality of the work product produced.

• Principle #3. Be ready to adapt. Dogma has no place in

software development. Adapt your approach to constraints

imposed by the problem, the people, and the project itself.

• Principle #4. Build an effective team. Software engineering

process and practice are important, but the bottom line is people.

Build a self-organizing team.

2

© McGraw-Hill

Principles that Guide Process 2

• Principle #5. Establish mechanisms for communication and

coordination. Projects fail because information falls into the

cracks and/or stakeholders fail to coordinate their efforts.

• Principle #6. Manage change. Approach may formal or

informal. You need mechanisms to manage how changes are

requested, assessed, approved and implemented.

• Principle #7. Assess risk. Lots of things can go wrong as

software is being developed, establish contingency plans.

• Principle #8. Create work products that provide value for

others. Create only those work products that provide value for

other process activities, actions or tasks.

3

© McGraw-Hill

Principles that Guide Practice 1

• Principle #1. Divide and conquer. Analysis and design should

always emphasize separation of concerns (SoC).

• Principle #2. Understand the use of abstraction. Abstraction

is a simplification of a complex system element used to

communication meaning simply.

• Principle #3. Strive for consistency. A familiar context makes

software easier to use.

• Principle #4. Focus on the transfer of information. Pay special

attention to the analysis, design, construction, and testing of

interfaces.

4

© McGraw-Hill

Principles that Guide Practice 2

• Principle #5. Build software that exhibits effective

modularity. Provides a mechanism for realizing the philosophy

of Separation of concerns .

• Principle #6. Look for patterns. The goal of patterns is to

create a body of literature to help developers resolve recurring

problems encountered in software development.

• Principle #7. Use multiple viewpoints. Represent the problem

and solution from different perspectives.

• Principle #8. Some consumes your work products. Remember

that someone will maintain the software.

5

© McGraw-Hill

Simplified Process Framework

Access the text alternative for slide images.

6

© McGraw-Hill

Communications Principles 1

• Principle #1. Listen. Try to focus on the speaker’s words, not

formulating your response to those words.

• Principle # 2. Prepare before you communicate. Understand

a problem before meeting with others.

• Principle # 3. Someone should facilitate the activity. Every

communication meeting should have a leader to keep the

conversation moving in a productive direction.

• Principle #4. Face-to-face communication is best. Visual

representations of information can be helpful.

• Principle # 5. Take notes and document decisions. Someone

should serve as a “recorder” and write down all important points

and decisions.

7

© McGraw-Hill

Communications Mode Effectiveness

Access the text alternative for slide images.

8

© McGraw-Hill

Communications Principles 2

• Principle # 6. Strive for collaboration. Consensus occurs

when collective team knowledge is combined.

• Principle # 7. Stay focused, modularize your discussion. The

more people involved in communication the more likely

discussion will bounce between topics.

• Principle # 8. If something is unclear, draw a picture.

• Principle # 9. (a) Once you agree to something, move on; (b)

If you can’t agree to something, move on; (c) If a feature or

function is unclear and cannot be clarified at the moment,

move on.

• Principle # 10. Negotiation is not a contest or a game. It

works best when both parties win.

9

© McGraw-Hill

Iterative Planning Process

Access the text alternative for slide images.

10

© McGraw-Hill

Planning Principles 1

• Principle #1. Understand the scope of the project. Scope

provides the software team with a destination as the roadmap is

created.

• Principle #2. Involve the customer in the planning activity.

They define priorities and project constraints.

• Principle #3. Recognize that planning is iterative. A project

plan is likely to change as work begins.

• Principle #4. Estimate based on what you know. Estimation

provides an indication of effort, cost, and task duration, based on

team’s current understanding of work.

• Principle #5. Consider risk as you define the plan.

Contingency planning is needed for identified high impact and

high probability risks.

11

© McGraw-Hill

Planning Principles 2

• Principle #7. Adjust granularity as you define the plan.

Granularity refers to the level of detail that is introduced as a

project plan is developed.

• Principle #8. Define how you intend to ensure quality. Your

plan should identify how the software team intends to ensure

quality.

• Principle #9. Describe how you intend to accommodate

change. Even the best planning can be obviated by uncontrolled

change.

• Principle #10. Track the plan frequently and make

adjustments as required. Software projects fall behind schedule

one day at a time.

12

© McGraw-Hill

Software Modeling

Access the text alternative for slide images.

13

© McGraw-Hill

Agile Modeling Principles 1

• Principle #1. The primary goal of the software team is to

build software not create models.

• Principle #2. Travel light – don’t create more models than

you need.

• Principle #3. Strive to produce the simplest model that will

describe the problem or the software.

• Principle #4. Build models in a way that makes them

amenable to change.

• Principle #5. Be able to state an explicit purpose for each

model that is created.

14

© McGraw-Hill

Agile Modeling Principles 2

• Principle #6. Adapt the models you create to the system at

hand.

• Principle #7. Try to build useful models, forget abut building

perfect models.

• Principle #8. Don’t become dogmatic about model syntax.

Successful communication is key.

• Principle #9. If your instincts tell you a paper model isn’t

working you may have a reason to be concerned.

• Principle #10. Get feedback as soon as you can.

15

© McGraw-Hill

Construction Principles - Coding 1

Preparation Principles: Before you write one line of code, be sure

you:

• Principle 1. Understand the problem to be solved.

• Principle 2. Understand basic design principles and concepts.

• Principle 3. Pick a programming language that meets the

needs of the software to be built.

• Principle 4. Select a programming environment that provides

tools that will make your work easier.

• Principle 5. Create a set of unit tests that will be applied once

the component you code is completed.

16

© McGraw-Hill

Construction Principles - Coding 2

Coding Principles: As you begin writing code, be sure you:

• Principle 6. Constrain your algorithms by following

structured programming practice.

• Principle 7. Consider the use of pair programming.

• Principle 8. Select data structures that will meet the needs of

the design.

• Principle 9. Understand the software architecture and create

interfaces that are consistent with it.

17

© McGraw-Hill

Construction Principles - Coding 3

Validation Principles: After you’ve completed your first coding

pass, be sure you:

• Principle 10. Conduct a code walkthrough when appropriate.

• Principle 11. Perform unit tests and correct errors you’ve

uncovered.

• Principle 12. Refactor the code to improve its quality.

18

© McGraw-Hill

Agile Testing

Access the text alternative for slide images.

19

© McGraw-Hill

Testing Principles 1

• Principle #1. All tests should be traceable to customer

requirements.

• Principle #2. Tests should be planned long before testing

begins.

1. Testing is a process of executing a program with intent of finding an error,

2. A good test case is one that has a high probability of finding an as-yet-

undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error.

• Principle #3. The Pareto principle applies to software testing.

20

© McGraw-Hill

Testing Principles 2

• Principle #4. Testing should begin “in the small” and

progress toward testing “in the large.”

• Principle #5. Exhaustive testing is not possible.

• Principle #6. Testing effort for each system module

commensurate to expected fault density.

• Principle #7. Static testing can yield high results.

• Principle #8. Track defects and look for patterns in defects

uncovered by testing.

• Principle #9. Include test cases that demonstrate software is

behaving correctly.

21

© McGraw-Hill

Software Deployment Actions

Access the text alternative for slide images.

22

© McGraw-Hill

Deployment Principles 1

• Principle #1. Customer expectations for the software must

be managed.

• Principle #2. A complete delivery package should be

assembled and tested.

• Principle #3. A support regime must be established before

the software is delivered.

• Principle #4. Appropriate instructional materials must be

provided to end-users.

• Principle #5. Buggy software should be fixed first, delivered

later.

23

Because learning changes everything.®

www.mheducation.com

© 2020 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom.

No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education.

