
Because learning changes everything.®

Chapter 7

Understanding Requirements

Part Two - Modeling

© 2020 McGraw Hill. All rights reserved. Authorized only for instructor use in the classroom.

No reproduction or further distribution permitted without the prior written consent of McGraw Hill.

© McGraw Hill

Requirements Engineering 1

• Inception - establish a basic understanding of the problem, the

people who want a solution, and the nature of the solution that

is desired, important to establish effective customer and

developer communication.

• Elicitation - elicit requirements and business goals form from

all stakeholders.

• Elaboration - focuses on developing a refined requirements

model that identifies aspects of software function, behavior, and

information.

2

© McGraw Hill

Requirements Engineering 2

• Negotiation—agree on the scope of a deliverable system that is

realistic for developers and customers.

• Specification—can be any or all of the following: written

documents, graphical models, mathematical models, usage

scenarios, prototypes.

• Validation—Requirements engineering work products produced

during requirements engineering are assessed for quality and

consistency.

• Requirements management – set of traceability activities to

help the project team identify, control, and track requirements

and their changes to requirements as the project proceeds.

3

© McGraw Hill

Non-functional Requirements

Non-Functional Requirement (N F R) – quality attribute,
performance attribute, security attribute, or general system
constraint.

A two-phase process is used to determine N F Rs:

• The first phase is to create a matrix using each N F R as a column

heading and the system S E guidelines a row labels.

• The second phase is for the team to prioritize each N F R using a set of

decision rules to decide which to implement by classifying each N F R

and guideline pair as complementary, overlapping, conflicting, or

independent.

4

© McGraw Hill

Establishing the Groundwork

Identify stakeholders.

• “who else do you think I should talk to?”

Recognize multiple points of view.

Work toward collaboration.

The first questions.

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need?

5

© McGraw Hill

Collaborative Requirements Gathering

• Meetings (real or virtual) are conducted and attended by both

software engineers and other stakeholders.

• Rules for preparation and participation are established.

• Agenda is suggested that is formal enough to cover all important

points but informal enough to encourage the free flow of ideas.

• A “facilitator” (customer, developer, or outsider) controls the

meeting.

• ∙A “definition mechanism” (worksheets, flip charts, wall stickers

or virtual forum) is used.

• Goal is to identify the problem, propose solution elements, and

negotiate different approaches.

6

© McGraw Hill

Elicitation Work Products

• Statement of need and feasibility.

• Bounded statement of scope for the system or product.

• List of customers, users, and other stakeholders who

participated in requirements elicitation,

• Description of the system’s technical environment.

• List of requirements (preferably organized by function) and the

domain constraints that apply to each.

• Set of usage scenarios (written in stakeholders’ own words) that

provide insight into the use of the system or product under

different operating conditions.

7

© McGraw Hill

Use Case Definition

A collection of user scenarios that describe the thread of usage of a system

Each scenario is described from the point-of-view of an “actor” - a person or device that interacts
with the software in some way

Each scenario answers the following questions:

• Who is the primary actor, the secondary actor (s)?

• What are the actor’s goals?

• What preconditions should exist before the story begins?

• What main tasks or functions are performed by the actor?

• What extensions might be considered as the story is described?

• What variations in the actor’s interaction are possible?

• What system information will the actor acquire, produce, or change?

• Will the actor have to inform the system about changes in the external environment?

• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected changes?

8

© McGraw Hill

Analysis Model Elements

• Analysis model provides a description of the required

informational, functional, and behavioral domains for a

computer-based system.

• Scenario-based elements – functional descriptions are express

in the customers own words and user stories and as interactions

of actors with the system expressed using U M L use case

diagrams.

• Class-based elements – collections of attributes and behaviors

implied by the user stories and expressed using U M L class

diagrams (information domain).

• Behavioral elements – may be expressed using U M L state

diagrams as inputs causing state changes.

9

© McGraw Hill

U M L Use Case Diagram

Access the text alternative for slide images.

10

© McGraw Hill

U M L Class Diagram

Access the text alternative for slide images.

11

© McGraw Hill

U M L State Diagram

Access the text alternative for slide images.

12

© McGraw Hill

Analysis Patterns

Pattern name: A descriptor that captures the essence of the pattern.

Intent: Describes what the pattern accomplishes or represents.

Motivation: A scenario that illustrates how the pattern can be used to address the problem.

Forces and context: A description of external issues (forces) that can affect how the pattern is

used and the external issues that will be resolved when the pattern is applied.

Solution: A description of how the pattern is applied to solve the problem with an emphasis on

structural and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what trade-offs exist

during its application.

Design: Discusses how the analysis pattern can be achieved through the use of known design

patterns.

Known uses: Examples of uses within actual systems.

Related patterns: On e or more analysis patterns that are related to the named pattern because

(1) it is commonly used with the named pattern; (2) it is structurally similar to the named

pattern; (3) it is a variation of the named pattern.

13

© McGraw Hill

Negotiating Requirements

Negotiations strive for a “win-win” result, stakeholders win by
getting a product satisfying most of their needs and developers win
by getting achievable deadlines.

Handshaking is one-way to achieve “win-win”.

• Developers propose solutions to requirements, describe their impact,

and communicate their intentions to the customers.

• Customer review the proposed solutions, focusing on missing features

and seeking clarification of novel requirements.

• Requirements are determined to be good enough if the customers

accept the proposed solutions.

Handshaking tends to improve identification, analysis, and

selection of variants.

14

© McGraw Hill

Requirements Monitoring

Useful for incremental development includes:

1. Distributed debugging - uncovers errors and determines their

cause.

2. Run-time verification - determines whether software matches

its specification.

3. Run-time validation - assesses whether the evolving software

meets user goals.

4. Business activity monitoring - evaluates whether a system

satisfies business goals.

5. Evolution and codesign - provides information to stakeholders

as the system evolves.

15

© McGraw Hill

Validating Requirements 1

• Is each requirement consistent with the overall objective for the

system/product?

• Have all requirements been specified at the proper level of

abstraction? That is, do some requirements provide a level of

technical detail that is inappropriate at this stage?

• Is the requirement really necessary or does it represent an add-on

feature that may not be essential to the objective of the system?

• Is each requirement bounded and unambiguous?

• Does each requirement have attribution? That is, is a source

(generally, a specific individual) noted for each requirement?

• Do any requirements conflict with other requirements?

16

© McGraw Hill

Validating Requirements 2

• Is each requirement achievable in the technical environment that

will house the system or product?

• Is each requirement testable, once implemented?

• Does the requirements model properly reflect the information,

function and behavior of system to be built?

• Has the requirements model been “partitioned” in a way that

exposes progressively more detailed information about the

system?

• Have requirements patterns been used to simplify the

requirements model. Have all patterns been properly validated?

Are all patterns consistent with customer requirements?

17

Because learning changes everything.®

www.mheducation.com

© 2020 McGraw Hill. All rights reserved. Authorized only for instructor use in the classroom.

No reproduction or further distribution permitted without the prior written consent of McGraw Hill.

