Because learning changes everything.®

Education

NINTH EDITION

Software
Engineering

A PRACTITIONERIS APPROACH
& \ e »

o

-—

Chapter 7 \.,, “. . ‘,‘:1,_

Understanding Requirements

Part Two - Modeling

Mc--"’. ROGER S{PRESSMAN
Graw
i BRUGE*R MAXIM

- ,_s

© 2020 McGraw Hill. All rights reserved. Authorized only for instructor use in the classroom.
No reproduction or further distribution permitted without the prior written consent of McGraw Hill.

Requirements Engineering .

* Inception - establish a basic understanding of the problem, the
people who want a solution, and the nature of the solution that
IS desired, important to establish effective customer and
developer communication.

« Elicitation - elicit requirements and business goals form from
all stakeholders.

 Elaboration - focuses on developing a refined requirements
model that identifies aspects of software function, behavior, and
Information.

© McGraw Hill

Requirements Engineering .

Negotiation—agree on the scope of a deliverable system that is
realistic for developers and customers.

Specification—can be any or all of the following: written
documents, graphical models, mathematical models, usage
scenarios, prototypes.

Validation—Requirements engineering work products produced
during requirements engineering are assessed for quality and
consistency.

Requirements management — set of traceability activities to
help the project team identify, control, and track requirements
and their changes to requirements as the project proceeds.

© McGraw Hill

Non-functional Requirements

Non-Functional Requirement (NFR) — quality attribute,
performance attribute, security attribute, or general system
constraint.

A two-phase process Is used to determine NFRs:

» The first phase is to create a matrix using each NFR as a column
heading and the system SE guidelines a row labels.

« The second phase is for the team to prioritize each NFR using a set of
decision rules to decide which to implement by classifying each NFR
and guideline pair as complementary, overlapping, conflicting, or
Independent.

© McGraw Hill

Establishing the Groundwork

Identify stakeholders.
* “who else do you think I should talk to?”

Recognize multiple points of view.

Work toward collaboration.

The first questions.

* Who is behind the request for this work?

* Who will use the solution?

« What will be the economic benefit of a successful solution?
« |s there another source for the solution that you need?

© McGraw Hill

Collaborative Requirements Gathering

« Meetings (real or virtual) are conducted and attended by both
software engineers and other stakeholders.

* Rules for preparation and participation are established.

« Agenda is suggested that is formal enough to cover all important
points but informal enough to encourage the free flow of ideas.

* A “facilitator” (customer, developer, or outsider) controls the
meeting.

* A “definition mechanism™ (worksheets, flip charts, wall stickers
or virtual forum) Is used.

« Goal is to identify the problem, propose solution elements, and
negotiate different approaches.

© McGraw Hill

Elicitation Work Products

Statement of need and feasibility.
Bounded statement of scope for the system or product.

List of customers, users, and other stakeholders who
participated in requirements elicitation,

Description of the system’s technical environment.

List of requirements (preferably organized by function) and the
domain constraints that apply to each.

Set of usage scenarios (written in stakeholders’ own words) that
provide insight into the use of the system or product under
different operating conditions.

© McGraw Hill

Use Case Definition

A collection of user scenarios that describe the thread of usage of a system

Each scenario is described from the point-of-view of an “actor” - a person or device that interacts
with the software in some way

Each scenario answers the following questions:

« Who is the primary actor, the secondary actor (s)?

* What are the actor’s goals?

« What preconditions should exist before the story begins?

« What main tasks or functions are performed by the actor?

« What extensions might be considered as the story is described?

« What variations in the actor’s interaction are possible?

« What system information will the actor acquire, produce, or change?

» Will the actor have to inform the system about changes in the external environment?
» What information does the actor desire from the system?

» Does the actor wish to be informed about unexpected changes?

© McGraw Hill

Analysis Model Elements

Analysis model provides a description of the required
Informational, functional, and behavioral domains for a
computer-based system.

Scenario-based elements — functional descriptions are express
In the customers own words and user stories and as interactions
of actors with the system expressed using UML use case
diagrams.

Class-based elements — collections of attributes and behaviors
Implied by the user stories and expressed using UML class
diagrams (information domain).

Behavioral elements — may be expressed using UML state
diagrams as inputs causing state changes.

© McGraw Hill

UML Use Case Diagram

Homeowner

System
Administrator

© McGraw Hill

Copyright ©@ McGraw-Hill Education. All rights reserved. No reproduction or
distribution without the prior written consent of McGraw-Hill Education.

Arms/disarms

system

Accesses
system
via Internet

Responds to
alarm events

Encounters
an error

condition

Sensors

Reconfigures
sensors and
related system /

features A/

Access the text alternative for slide images.

10

UML Class Diagram

s reserved. No reproduction or
ttttttttttttttttttttttttttttttttttttt McGraw-Hill Education.

Sensor

Name
Type
I Location
Area
Characteristics

|dentify()
Enable()
Disable()
Reconfigure|)

Access the text alternative for slide images.

© McGraw Hill

11

UML State Diagram

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or
distribution without the prior written consent of McGraw-Hill Education.

Reading Commands

System Status = "ready"
Display msg = "enter cmd"
Display status = "steady"

cmd = off

Entry/subsystems ready
Do: poll user input panel
Do: ready user input
Do: interpret user input

System Status = "off"

Screen Blank

Access the text alternative for slide images.

© McGraw Hill

12

Analysis Patterns

Pattern name: A descriptor that captures the essence of the pattern.
Intent: Describes what the pattern accomplishes or represents.
Motivation: A scenario that illustrates how the pattern can be used to address the problem.

Forces and context: A description of external issues (forces) that can affect how the pattern is
used and the external issues that will be resolved when the pattern is applied.

Solution: A description of how the pattern is applied to solve the problem with an emphasis on
structural and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what trade-offs exist
during its application.

Design: Discusses how the analysis pattern can be achieved through the use of known design
patterns.

Known uses: Examples of uses within actual systems.

Related patterns: On e or more analysis patterns that are related to the named pattern because
(1) it is commonly used with the named pattern; (2) it is structurally similar to the named
pattern; (3) it is a variation of the named pattern.

© McGraw Hill

13

Negotiating Requirements

Negotiations strive for a “win-win’ result, stakeholders win by
getting a product satisfying most of their needs and developers win
by getting achievable deadlines.

Handshaking Is one-way to achieve “win-win”.

» Developers propose solutions to requirements, describe their impact,
and communicate their intentions to the customers.

« Customer review the proposed solutions, focusing on missing features
and seeking clarification of novel requirements.

* Requirements are determined to be good enough if the customers
accept the proposed solutions.

Handshaking tends to improve identification, analysis, and
selection of variants.

© McGraw Hill

14

Requirements Monitoring

Useful for incremental development includes:

1.

Distributed debugging - uncovers errors and determines their
cause.

Run-time verification - determines whether software matches
Its specification.

Run-time validation - assesses whether the evolving software
meets user goals.

Business activity monitoring - evaluates whether a system
satisfies business goals.

Evolution and codesign - provides information to stakeholders
as the system evolves.

© McGraw Hill

15

Validating Requirements .

Is each requirement consistent with the overall objective for the
system/product?

Have all requirements been specified at the proper level of
abstraction? That is, do some requirements provide a level of
technical detail that Is inappropriate at this stage?

Is the requirement really necessary or does it represent an add-on
feature that may not be essential to the objective of the system?

Is each requirement bounded and unambiguous?

Does each requirement have attribution? That is, Is a source
(generally, a specific individual) noted for each requirement?

Do any requirements conflict with other requirements?

© McGraw Hill 16

Validating Requirements .

Is each requirement achievable in the technical environment that
will house the system or product?

Is each requirement testable, once implemented?

Does the requirements model properly reflect the information,
function and behavior of system to be built?

Has the requirements model been “partitioned” in a way that
exposes progressively more detailed information about the
system?

Have requirements patterns been used to simplify the
requirements model. Have all patterns been properly validated?
Are all patterns consistent with customer requirements?

© McGraw Hill 17

Mc
Graw

alll

Education

Because learning changes everything.®

www.mheducation.com

© 2020 McGraw Hill. All rights reserved. Authorized only for instructor use in the classroom.
No reproduction or further distribution permitted without the prior written consent of McGraw Hill.

