
Because learning changes everything.®

Chapter 8

Requirements Modeling – A

Recommended Approach

Part Two - Mobility.

© 2020 McGraw Hill. All rights reserved. Authorized only for instructor use in the classroom.

No reproduction or further distribution permitted without the prior written consent of McGraw Hill.

© McGraw Hill

Requirements Analysis

Requirements analysis

• specifies software’s operational characteristics.

• indicates software's interface with other system elements.

• establishes constraints that software must meet.

Requirements analysis allows the software engineer to:

• elaborate on basic requirements established during earlier requirement

engineering tasks.

• build models that depict the user’s needs from several different perspectives.

2

© McGraw Hill

Requirements Models

• Scenario-based models depict requirements from the point of

view of various system “actors.”

• Class-oriented models represent object-oriented classes

(attributes and operations) and how classes collaborate to

achieve system requirements.

• Behavioral models depict how the software reacts to internal

or external “events.”

• Data models depict the information domain for the problem.

• Flow-oriented models represent functional elements of the

system and how they transform data in the system.

3

© McGraw Hill

A Bridge

Access the text alternative for slide images.

4

© McGraw Hill

Rules of Thumb

• The level of abstraction should be relatively high - focus on
requirements visible in problem or business domains.

• Analysis model should provide insight into information
domain, function, and behavior of the software.

• Delay consideration of infrastructure and other non-functional
models until later in the modeling activity.

• The analysis model provides value to all stakeholders keep the
model as simple as it can be.

5

© McGraw Hill

Requirements Modeling Principles

• Principle 1. The information domain of a problem must be

represented and understood.

• Principle 2. The functions that the software performs must be

defined.

• Principle 3. The behavior of the software (as a consequence of

external events) must be represented.

• Principle 4. The models that depict information, function, and

behavior must be partitioned in a manner that uncovers detail

in a layered (or hierarchical) fashion.

• Principle 5. The analysis task should move from essential

information toward implementation detail.

6

© McGraw Hill

Scenario-Based Modeling: Actors and
Profiles
A U M L actor models an entity that interacts with a system object.

• Actors may represent roles played by human stakeholders or external

hardware as they interact with system objects by exchanging information.

A U M L profile provides a way of extending an existing model to
other domains or platforms.

• This might allow you to revise the model of a Web-based system and model
the system for various mobile platforms.

• Profiles might also be used to model the system from the viewpoints of
different users.

7

© McGraw Hill

Use Cases

• Use case as a “contract for behavior” and more formal than a

user story.

• Use-cases are simply an aid to defining what exists outside the

system (actors) and what should be performed by the system

(use-cases).

1. What should we write about?

2. How much should we write about it?

3. How detailed should we make our description?

4. How should we organize the description?

8

© McGraw Hill

What to Write About?

• The first two requirements engineering tasks—inception and

elicitation—provide you with the information you’ll need to

begin writing use cases.

• To begin developing a set of use cases, list the functions or

activities performed by a specific actor.

• You can obtain these from a list of required system functions,

through conversations with stakeholders, or by an evaluation of

activity diagrams developed as part of requirements modeling.

• Use cases of this type are sometimes referred to as primary

scenarios.

9

© McGraw Hill

Alternative Interactions

Description of alternative interactions is essential to completely

understand a function described a use case.

• Can the actor take some other action at this point?

• Is it possible that the actor will encounter some error condition at this point?

• Is it possible that the actor will encounter some other behavior at this point
(for example: behavior that is invoked by some event outside the actor’s
control)?

Answers to these questions result in the creation of a set of

secondary scenarios represent alternative use cased behavior.

10

© McGraw Hill

Defining Exceptions

An exception describes a situation (either a failure condition or
an alternative chosen by the actor) that causes the system to

exhibit somewhat different behavior.

Questions to ask:

• Are there cases in which some “validation function” occurs during this use
case?

• Are there cases in which a supporting function (or actor) will fail to respond
appropriately?

• Can poor system performance result in unexpected or improper user
actions?

11

© McGraw Hill

Documenting Use Cases

• What are the main tasks or functions that are performed by the
actor?

• What system information will the actor acquire, produce or
change?

• Will the actor have to inform the system about changes in the
external environment?

• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected changes?

• What are the preconditions, triggers, exceptions, and open
issues?

12

© McGraw Hill

Use Case Diagram

Access the text alternative for slide images.

13

© McGraw Hill

Class-Based Modeling

Class-based modeling represents:

• objects that the system will manipulate.

• operations (also called methods or services) that will be applied to the objects

to effect the manipulation.

• relationships (some hierarchical) between the objects.

• collaborations that occur between the classes that are defined.

The elements of a class-based model include classes and objects,

attributes, operations, C R C models, U M L class diagrams.

14

© McGraw Hill

Identifying Analysis Classes

Examining the usage scenarios developed as part of the
requirements model and perform a "grammatical parse“.

• Classes are determined by underlining each noun or noun phrase and entering
it into a simple table.

• Synonyms should be noted.

• If the class (noun) is required to implement a solution, then it is part of the
solution space; otherwise, if a class is necessary only to describe a solution, it
is part of the problem space.

But what should we look for once all of the nouns have been

isolated?

15

© McGraw Hill

Potential Analysis Classes

• External entities (for example: other systems, devices, people) that

produce or consume information.

• Things (for example: reports, displays, letters, signals) that are part of the

information domain for the problem.

• Occurrences or events that occur within the context of system operation.

• Roles played by people who interact with the system.

• Organizational units that are relevant to an application.

• Places that establish the context of the problem and overall function.

• Structures (for example: sensors, four-wheeled vehicles, or computers) that

define a class of objects or related classes of objects.

16

© McGraw Hill

Analysis Class Selection

• Retained information. Potential class will be useful during analysis only if

information about it must be remembered.

• Needed services. Potential class must have a set of identifiable operations

that can change the value of its attributes in some way.

• Multiple attributes. Focus should be on "major" information; a class with a

single attribute may be better represented as an attribute of another class.

• Common attributes. A set of attributes can be defined for the potential

class and the attributes apply to all instances of the class.

• Common operations. A set of operations can be defined for the potential

class and the operations apply to all instances of the class.

• Essential requirements. External entities that appear in the problem space

and produce or consume information essential to the solution will usually be

defined as analysis classes in the model.

17

© McGraw Hill

Defining Attributes

• Attributes describe a class that has been selected for inclusion

in the analysis model.

• It is the attributes that define the class—that clarify what is

meant by the class in the context of the problem space.

• To develop a meaningful set of attributes for an analysis class,

you should study each use case and select those “things” that

reasonably “belong” to the class.

• What data items(composite and/or elementary) fully define this

class in the context of the problem at hand?

18

© McGraw Hill

Defining Operations

• Operations define the behavior of an object.

• Operations they can generally be divided into four broad categories:

1. Operations that manipulate data in some way.

2. Operations that perform a computation.

3. Operations that inquire about the state.

4. Operations that monitor an object for the occurrence of a controlling

event.

• These functions are accomplished by operating on attributes and/or

associations.

• Therefore, an operation must have “knowledge” of the class attributes and

associations.

19

© McGraw Hill

C R C Modeling

• Class-responsibility-collaborator (C R C) modeling provides a

simple means for identifying and organizing the classes that are

relevant to system or product requirements.

• A C R C model is really a collection of standard index cards that

represent classes.

• The cards are divided into three sections:

1. Along the top of the card you write the name of the class.

2. list the class responsibilities on the left.

3. list the collaborators on the right.

20

© McGraw Hill

C R C Cards

Access the text alternative for slide images.

21

© McGraw Hill

C R C Model Review Process

1. All stakeholders in the review (of the C R C model) are given a subset of

the C R C model index cards. No reviewer should have two cards that

collaborate.

2. The review leader reads the use case deliberately. As the review leader

comes to a named object, she passes a token to the person holding the

corresponding class index card.

3. When the token is passed, the holder of the class card is asked to describe

the responsibilities noted on the card. The group determines whether one

of the responsibilities satisfies the use case requirement.

4. If an error is found, modifications are made to the cards. This may include

the definition of new classes (C R C index cards) or revising lists of

responsibilities or collaborations on existing cards.

22

© McGraw Hill

Functional Modeling

• The functional model addresses two application processing

elements:

1. user-observable functionality that is delivered by the app to

end users.

2. operations contained within analysis classes that implement

behaviors associated with the class.

• U M L activity diagrams can be used to represent processing

details.

• U M L activity diagram supplements a use case by providing a

graphical representation of the flow of interaction within a

specific scenario.

23

© McGraw Hill

Activity Diagram 1

Access the text alternative for slide images.

24

© McGraw Hill

Sequence Diagram 1

• The U M L sequence diagram can be used for behavioral

modeling.

• Sequence diagrams can also be used to show how events cause

transitions from object to object.

• Once events have been identified by examining a use case, the

modeler creates a sequence diagram—a representation of how

events cause flow from one object to another as a function of

time.

• Sequence diagram is a shorthand version of a use case.

25

© McGraw Hill

Sequence Diagram 2

Access the text alternative for slide images.

26

© McGraw Hill

Behavioral Modeling

• A behavioral model indicates how software will respond to

internal or external events or stimuli.

• This information is useful in the creation of an effective design

for the system to be built.

• U M L activity diagrams can be used to model how system

elements respond to internal events.

• U M L state diagrams can be used to model how system

elements respond to external events.

27

© McGraw Hill

Creating Behavioral Models

1. Evaluate all use cases to fully understand the sequence of

interaction within the system.

2. Identify events that drive the interaction sequence and

understand how these events relate to specific objects.

3. Create a sequence diagram for each use case.

4. Build a state diagram for the system.

5. Review the behavioral model for accuracy and consistency.

28

© McGraw Hill

Identifying Events

• A use case represents a sequence of activities that involves

actors and the system.

• An event occurs whenever the system and an actor exchange

information.

• An event is not the information that has been exchanged, but

rather the fact that information has been exchanged.

• A use case needs to be examined for points of information

exchange.

• Events are used to trigger state transitions.

29

© McGraw Hill

State Diagram

Access the text alternative for slide images.

30

© McGraw Hill

Activity Diagram 2

Access the text alternative for slide images.

31

© McGraw Hill

Swimlane Diagrams

• The U M L swimlane diagram is a useful variation of the activity diagram

that allows you to represent the flow of activities described by the use case.

• Swimlane diagrams indicate which actor (if there are multiple actors

involved in a specific use case) or analysis class has responsibility for the

action described by an activity rectangle.

• Responsibilities are represented as parallel segments that divide the diagram

vertically, like the lanes in a swimming pool.

32

© McGraw Hill

Swimlane Diagram

Access the text alternative for slide images.

33

Because learning changes everything.®

www.mheducation.com

© 2020 McGraw Hill. All rights reserved. Authorized only for instructor use in the classroom.

No reproduction or further distribution permitted without the prior written consent of McGraw Hill.

© McGraw Hill

Accessibility Content: Text Alternatives for Images

35

© McGraw Hill

A Bridge – Text Alternative
Return to parent-slide containing images.

An illustration displays a bridge. Three circles represent the system

description, analysis model, and design model. The analysis model

overlaps with the system description, and the design model.

Return to parent-slide containing images.

36

© McGraw Hill

Use Case Diagram – Text Alternative
Return to parent-slide containing images.

An illustration displays a case diagram. The homeowner is

connected to the three use cases of a safehome. The use cases are,

access camera surveillance via the internet, configures safehome

system parameters, and sets alar. The access camera surveillance

via the internet is further connected to cameras.

Return to parent-slide containing images.

37

© McGraw Hill

C R C Cards – Text Alternative
Return to parent-slide containing images.

An illustration displays C R C cards. The title reads class: floor plan.

The space below the title reads description. The card is further

divided into two columns titled responsibility, and collaborator. The

responsibility reads defines floor plan name or type; manages floor

plan positioning; scales floor plan for display; incorporates walls,

door, and windows, and shows position of video cameras. The

collaborator reads, wall on the column corresponding to

incorporates wall, doors, and windows; and camera in the column

respective to shows position of video cameras.

Return to parent-slide containing images.

38

© McGraw Hill

Activity Diagram 1 – Text Alternative
Return to parent-slide containing images.

A flowchart displays an activity diagram. The diagram starts with

two possibilities, camera not in use, and camera in use. If the

camera in use, get current camera user, and then report camera in

use and home of current user. If the camera not in use, the request

camera lock. If the camera lock is available, then report camera

now locked for user. If the lock is unavailable, then report camera

unavailable.

Return to parent-slide containing images.

39

© McGraw Hill

Sequence Diagram 2 – Text Alternative
Return to parent-slide containing images.

The sequence diagram has four life lines which are labeled, from left to

right, homeowner, control panel, system and sensors. When the system is

ready the homeowner enters a password which is relayed to the control

panel. The control panel begins by reading the message and then

performs a compare of the password entered. When comparing the

control panel sends a lookup request to the system which return a result.

If the password is correct the system sends an activation request to the

sensors which over a duration sends a successful activation message to

the control panel which further the relays the successful activation

message to the homeowner. If the password entered is wrong the

homeowner has a maximum number of three tries to enter the correct

password. If the three tries are exceeded the system is locked. Locked

system has looped timer.

Return to parent-slide containing images.

40

© McGraw Hill

State Diagram – Text Alternative
Return to parent-slide containing images.

The state diagram shows an initial state of the process. After the key is hit

the diagram shows a reading state. The reading state transitions the

entered password to a comparing state. The comparing state is a shown as

a class with a validate password operation. The comparing state has a

loop, if password equals incorrect and number of tries greater than

maximum number of tries. When number of tries exceeds maximum

number of tries the comparing state transitions to a locked state. A locked

state has a loop with timer greater than locked time. When timer greater

than locked time the locked state transitions back to the reading state. If

the password entered is correct the comparing state transitions to a

selecting state. Upon a successful activation selecting state transitions

back to the reading state.

Return to parent-slide containing images.

41

© McGraw Hill

Activity Diagram 2 – Text Alternative
Return to parent-slide containing images.

The activity diagram begins with an initial state. The next activity state is enter

password and user I D. This initiates a condition. If a password and I D are valid

and if a password and I D are invalid. If invalid, then prompt for reentry activity.

This entails another condition. If input tries remain the process loops back to the

initial condition at enter password and I D if no input tries remain the process

reaches an end state. If in the initial condition the valid I D and password were

entered the next activity is select major function here other functions may also be

selected. After this next activity is select surveillance. After selecting

surveillance, the user can choose thumbnail views or select a specific camera.

Selecting thumbnail, leads to select specific camera thumbnails and selecting a

specific camera leads to select camera icon. Both, select specific camera

thumbnails and select camera icon lead to view camera in output in labeled

window. This leads to prompt for another view. This leads to two condition. First

exit this function which leads to a final state or see another camera which loops

back to the condition under select surveillance.

Return to parent-slide containing images.

42

© McGraw Hill

Swimlane Diagram – Text Alternative
Return to parent-slide containing images.

The swimlane diagram is illustrated within a table. The three column headings of the table

are: homeowner, camera and interface. The flow begins with an initial state in

homeowner. The next activity state is enter password and user I D. This initiates a

condition in the interface. If a password and I D are valid and if a password and I D are

invalid. If invalid, then prompt for reentry activity. This entails another condition also

within interface. If input tries remain the process loops back to the initial condition at

enter password and I D if no input tries remain the process reaches an end state. If in the

initial condition the valid I D and password were entered the next activity is select major

function, under homeowner, here other functions may also be selected. After this next

activity is select surveillance. After selecting surveillance, the user can choose thumbnail

views or select a specific camera. Selecting thumbnail, leads to select specific camera

thumbnails and selecting a specific camera leads to select camera icon. Both, select

specific camera thumbnails and select camera icon lead to, the activity, generate video

output, under the column camera. Generate video output leads to view camera in output in

labeled window, under homeowner. This leads to prompt for another view under interface.

This leads to two conditions. First exit this function which leads to a final state or see

another camera which loops back to the condition under select surveillance.

Return to parent-slide containing images.

43

